热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入解析Android中图像资源的内存占用问题及其优化策略

在Android开发过程中,图像资源的内存占用是一个值得关注的问题。本文将探讨图像内存占用与哪些因素相关,包括设备性能的影响,并提供一系列优化策略,帮助开发者有效管理图像资源,提升应用性能。

前言

Android 在加载图片的时候一定会考虑到的一个点就是如何防止 OOM,那么一张图片在加载的时候到底会占用多少内存呢?有哪些因素会影响占用的内存呢?知道了这些,我们才能知道可以从哪些点去优化,从而避免 OOM。

一、图片占用内存与宽、高、色彩模式的关系

首先我们准备一张 1920*1080 的图片:

然后我使用的测试机是 Redmi Note 9 Pro,分辨率是 2400*1080,将这张图片放到对应分辨率的目录下,也就是 drawable-xxhdpi 目录下,然后使用不同的配置去加载图片:

override fun initData() {
val optiOns= BitmapFactory.Options()
val bitmap = BitmapFactory.decodeResource(resources, R.drawable.test_xxhdpi, options)
ShowLogUtil.info("width: ${options.outWidth},height: ${options.outHeight},config: ${options.inPreferredConfig},占用内存: ${bitmap.allocationByteCount}")
options.inSampleSize = 2
val bitmap2 = BitmapFactory.decodeResource(resources, R.drawable.test_xxhdpi, options)
ShowLogUtil.info("width: ${options.outWidth},height: ${options.outHeight},config: ${options.inPreferredConfig},占用内存: ${bitmap2.allocationByteCount}")
options.inPreferredCOnfig= Bitmap.Config.RGB_565
val bitmap3 = BitmapFactory.decodeResource(resources, R.drawable.test_xxhdpi, options)
ShowLogUtil.info("width: ${options.outWidth},height: ${options.outHeight},config: ${options.inPreferredConfig},占用内存: ${bitmap3.allocationByteCount}")
}

在上面的代码中,第一次加载图片时使用的是默认配置,第二次加载图片的时候修改了采样率,采样率必须设置为 2 的 n(n≥0) 次幂;第三次加载图片的时候在修改采样率的基础上再修改了色彩模式。观察 log:

可以看到第二次由于我们设置采样率为 2,相当于设置图片压缩比,然后加载时的宽和高都变成了第一次的 1/2,占用内存为第一次的 1/4;第三次在第二次的基础上再设置了色彩模式为 RGB_565,占用内存为第二次的 1/2,第一次的 1/8。

其实还有其他的色彩模式,最后再解释几种色彩模式有什么区别,现在只需要知道 ARGB_8888 是 ARGB 分量都是 8 位,所以一个像素点占 32 位,也就是 4 字节,它是最能保证图片效果的一种模式。而 RGB_565 中 RGB 分量分别使用5位、6位、5位,没有透明度,所以一个像素点占 16 位,也就是 2 字节。

那么我们可以简单的看出,占位内存是与加载宽高,与像素点大小成正比,且倍数关系,而且暂时认为它们的关系为:

占用内存=宽*高*像素点大小

二、图片占用内存与存放文件夹的关系

在日常开发中,UI 在切图的时候通常会切不同分辨率的图片,2 倍图对应 Android 的 xhdpi 目录,3 倍图对应 Android 的 xxhdpi 目录,那么为什么不同资源文件夹需要不同分辨率的图片呢?只用一套图片可不可以呢?我们来看看将同一张图片放到不同目录下,在加载的时候内存占用情况分别如何。

我将上图放在不同目录下,分别命名为不同的名字:

 这里图片的分辨率都是一样的,都是 1920*1080,只是放到了不同目录下,然后我们再分别加载这三张图片。

override fun initData() {
val options1 = BitmapFactory.Options()
val bitmap = BitmapFactory.decodeResource(resources, R.drawable.test_xxhdpi, options1)
ShowLogUtil.info(
"width: ${options1.outWidth},height: ${options1.outHeight},config: ${options1.inPreferredConfig},占用内存: ${bitmap.allocationByteCount},inDensity: ${options1.inDensity},inTargetDensity: ${options1.inTargetDensity}"
)
val options2 = BitmapFactory.Options()
val bitmap2 = BitmapFactory.decodeResource(resources, R.drawable.test_xhdpi, options2)
ShowLogUtil.info(
"width: ${options2.outWidth},height: ${options2.outHeight},config: ${options2.inPreferredConfig},占用内存: ${bitmap2.allocationByteCount},inDensity: ${options2.inDensity},inTargetDensity: ${options2.inTargetDensity}"
)
val options3 = BitmapFactory.Options()
val bitmap3 = BitmapFactory.decodeResource(resources, R.drawable.test_hdpi, options3)
ShowLogUtil.info(
"width: ${options3.outWidth},height: ${options3.outHeight},config: ${options3.inPreferredConfig},占用内存: ${bitmap3.allocationByteCount},inDensity: ${options3.inDensity},inTargetDensity: ${options3.inTargetDensity}"
)
}

在加载三张图的时候分别传入了一个默认的 Options 对象,并在加载图片完成后增加了 Options 的 inDensity 和 inTargetDensity 属性的 log,观察 log:

 可以看到在加载 xhdpi 的图片时内存占用大于 xxhdpi 的内存占用,为 xxhdpi 的 2.25 倍,在加载 hdpi 的图片时内存占用为 xxhdpi 的 4 倍,那这个倍数关系是怎么来的呢?别着急,一会儿通过源码可以找到答案。

我们先修改一下图片,将 xhdpi 目录下的图片分辨率改为 1280*720,hdpi 目录下的图片分辨率改为 960*540,再次运行,观察 log:

这时候我们发现加载不同分辨率下目录的图片的内存占用都是一样的了。

现在我们来查看一下 BitmapFactory.decodeResource() 方法的源码了:

public static Bitmap decodeResource(Resources res, int id, Options opts) {
validate(opts);
Bitmap bm = null;
InputStream is = null;

try {
final TypedValue value = new TypedValue();
// 打开资源流,并初始化一些属性。
is = res.openRawResource(id, value);
// 解析图片资源。
bm = decodeResourceStream(res, value, is, null, opts);
} catch (Exception e) {
/* do nothing.
If the exception happened on open, bm will be null.
If it happened on close, bm is still valid.
*/
} finally {
try {
if (is != null) is.close();
} catch (IOException e) {
// Ignore
}
}
if (bm == null && opts != null && opts.inBitmap != null) {
throw new IllegalArgumentException("Problem decoding into existing bitmap");
}
return bm;
}

decodeResource() 方法中 bitmap 对象是通过 decodeResourceStream() 方法去加载的,继续查看 decodeResourceStream() 方法:

@Nullable
public static Bitmap decodeResourceStream(@Nullable Resources res, @Nullable TypedValue value,
@Nullable InputStream is, @Nullable Rect pad, @Nullable Options opts) {
validate(opts);
// 检查 Options 对象是否为空,为空则创建一个默认对象。
if (opts == null) {
opts = new Options();
}
// 查看 Options 对象是否设置了 inDensity,这里是默认的,所以没有设置,TypedValue 对象在上面的 decodeResource() 方法中也是创建的一个默认对象,所以不为 null,必然进这个 if 代码块。
if (opts.inDensity == 0 && value != null) {
final int density = value.density;
if (density == TypedValue.DENSITY_DEFAULT) {
opts.inDensity = DisplayMetrics.DENSITY_DEFAULT;
} else if (density != TypedValue.DENSITY_NONE) {
// TypedValue 对象在上面的 decodeResource() 方法中调用 Resources.openRawResource() 方法的时候 density 会赋值成对应的资源文件所在目录的 density 值,所以会走到这里,给 Options 的 inDensity 属性赋值。
opts.inDensity = density;
}
}

// Options 的 inTargetDensity 默认没有赋值,所以会进 if 代码块,赋值为手机屏幕的 densityDpi。
if (opts.inTargetDensity == 0 && res != null) {
opts.inTargetDensity = res.getDisplayMetrics().densityDpi;
}

return decodeStream(is, pad, opts);
}

该方法最后调用的是 decodeStream() 方法,继续查看 decodeStream() 方法,这里我只解释关键代码,省略部分代码:

@Nullable
public static Bitmap decodeStream(@Nullable InputStream is, @Nullable Rect outPadding,
@Nullable Options opts) {
...
try {
if (is instanceof AssetManager.AssetInputStream) {
final long asset = ((AssetManager.AssetInputStream) is).getNativeAsset();
bm = nativeDecodeAsset(asset, outPadding, opts, Options.nativeInBitmap(opts),
Options.nativeColorSpace(opts));
} else {
// 这里的资源并非从 assets 目录中加载,所以进入 else 代码块。
bm = decodeStreamInternal(is, outPadding, opts);
}
...
} finally {
Trace.traceEnd(Trace.TRACE_TAG_GRAPHICS);
}
return bm;
}

继续查看 decodeStreamInternal() 方法:

private static Bitmap decodeStreamInternal(@NonNull InputStream is,
@Nullable Rect outPadding, @Nullable Options opts) {
// ASSERT(is != null);
byte [] tempStorage = null;
if (opts != null) tempStorage = opts.inTempStorage;
if (tempStorage == null) tempStorage = new byte[DECODE_BUFFER_SIZE];
return nativeDecodeStream(is, tempStorage, outPadding, opts,
Options.nativeInBitmap(opts),
Options.nativeColorSpace(opts));
}

可以看到该方法中最终调用了 native 层中的 nativeDecodeStream() 方法,所以我们需要继续追到 c++ 层,调用的是 /frameworks/base/core/jni/android/graphics/BitmapFactory.cpp,查看其 nativeDecodeStream 方法:

static jobject nativeDecodeStream(JNIEnv* env, jobject clazz, jobject is, jbyteArray storage,
jobject padding, jobject options) {
jobject bitmap = NULL;
std::unique_ptr stream(CreateJavaInputStreamAdaptor(env, is, storage));
if (stream.get()) {
std::unique_ptr bufferedStream(
SkFrontBufferedStream::Make(std::move(stream), SkCodec::MinBufferedBytesNeeded()));
SkASSERT(bufferedStream.get() != NULL);
bitmap = doDecode(env, std::move(bufferedStream), padding, options);
}
return bitmap;
}

可以看到图片的解码是通过 doDecode() 方法完成,查看该方法,这里我只解释关键代码,省略部分代码:

static jobject doDecode(JNIEnv* env, std::unique_ptr stream,
jobject padding, jobject options) {
// Set default values for the options parameters.
...
// 初始化缩放比为 1.0
float scale = 1.0f;
...
if (options != NULL) {
...
// 获取 java 中的 Options 对象中的 density,targetDensity,计算出缩放比,两者都是在 java 代码中的 decodeResourceStream() 方法赋值的。
if (env->GetBooleanField(options, gOptions_scaledFieldID)) {
const int density = env->GetIntField(options, gOptions_densityFieldID);
const int targetDensity = env->GetIntField(options, gOptions_targetDensityFieldID);
const int screenDensity = env->GetIntField(options, gOptions_screenDensityFieldID);
// 如加载的是 xhdpi 中的图片则 inDensity 为 320,使用的测试机分辨率为 1920*1080,则 targetDensity 为 480,所以 scale 为 480/320=1.5
if (density != 0 && targetDensity != 0 && density != screenDensity) {
scale = (float) targetDensity / density;
}
}
}
...
int scaledWidth = size.width();
int scaledHeight = size.height();
...
// Scale is necessary due to density differences.
if (scale != 1.0f) {
// 需要缩放的话,计算缩放后的宽高。宽高分别乘以缩放比 scale。
willScale = true;
scaledWidth = static_cast(scaledWidth * scale + 0.5f);
scaledHeight = static_cast(scaledHeight * scale + 0.5f);
}
...
if (willScale) {
...
outputBitmap.setInfo(
bitmapInfo.makeWH(scaledWidth, scaledHeight).makeColorType(scaledColorType));
...
} else {
outputBitmap.swap(decodingBitmap);
}
...
// now create the java bitmap
return bitmap::createBitmap(env, defaultAllocator.getStorageObjAndReset(),
bitmapCreateFlags, ninePatchChunk, ninePatchInsets, -1);
}

通过对源码的简单分析,我们可以得出的结论是,如果加载的图片所处的分辨率与手机屏幕分辨率不一样的话,会对图片进行缩放,宽高分别会乘以缩放比重新计算,所以它们的关系为:占用内存=(宽*缩放比)*(高*缩放比)*像素点大小,即

占用内存=宽*高*(手机屏幕密度/资源文件夹密度)²*像素点大小

这也就可以解释为什么不同的资源目录下需要不同分辨率的图片了,主要是为了节省内存。但是如果每一种分辨率都要去适配的话,那势必会增加图片,增加包体积,所以在做图片适配的时候,要根据图片使用频率以及市场手机分辨率分布情况做好利弊权衡。

三、从文件中加载图片和从网络加载图片占用内存

这两种加载图片的方式的话,其实通过刚才的源码分析,并不需要再通过实际运行我们就可以知道,由于没有设置 inDensity 和 inTargetDensity,所以占用内存就是宽*高*像素点大小。由于它不会进行缩放,所以我们在从文件中加载图片和从网络加载图片的时候,尤其需要注意它的内存占用情况,避免 OOM。

并且通过刚才的分析,我们可以知道除了可以设置 inSampleSize 来优化占用内存,也可以通过设置 inDensity 和 inTargetDensity 来通过缩放比间接地优化占用内存。

四、色彩模式

色彩模式在 Android 中主要有四种,介绍这个的文章很多,简单提一下:

Bitmap.Config.ARGB_8888:ARGB 分量都是 8 位,总共占 32 位,还原度最高。

Bitmap.Config.ARGB_4444:ARGB 分量都是 4 位,总共占 16 位,保留透明度,但还原度较低。

Bitmap.Config.RGB_565:没有透明度,RGB 分量分别占 5、6、5 位,总共占 16 位。

Bitmap.Config.ALPHA_8:只保留透明度,总共占 8 位。

这里重点不是为了介绍它们的区别,是要提一点,并不是你设置了那个色彩模式就一定会按照这个色彩模式去加载,需要看图片解码器是否支持,比如我们如果有一个灰度加载图片的需求,那么这时候设置色彩模式为 Bitmap.Config.ALPHA_8 看起来是最简单也最高效的方法,但实际可能并不是这样,如果图片解码器不支持,那么还是会使用 Bitmap.Config.ARGB_8888 去加载,这里是一个坑,还希望出现这种情况的时候,小伙伴们能想到可能有这个原因。

附:inDensity,inTargetDensity,inScreenDensity, inScaled三者关系

通过追查代码,我们可以看到图片资源通过数据流解码时,会根据inDensity,inTargetDensity,inScreenDensity三个值和是否被缩放标识inScaled


  • inDensity:图片本身的像素密度(其实就是图片资源所在的哪个密度文件夹下,如在xxhdpi下就是480,如果在asstes、手机内存/sd卡下,默认是160);

  • inTargetDensity:图片最终在bitmap里的像素密度,如果没有赋值,会将inTargetDensity设置成inScreenDensity;

  • inScreenDensity:手机本身的屏幕密度,如我们测试的三星手机dpi=640, 如果inDensity与inTargetDensity不相等时,就需要对图片进行缩放,inScaled = inTargetDensity/inDensity。

五、总结

1.图片占用内存=宽*高*(手机屏幕密度/资源文件夹密度)²*像素点大小,所以我们在优化图片占用内存的时候主要考虑两个方面:

1)控制图像加载尺寸,这有两种方式:

设置采样率来控制加载的宽高;通过设置 inDensity 和 inTargetDensity 控制缩放比。

2)设置色彩模式来控制像素点大小,如果不需要透明度的图片,可以设置色彩模式为 Bitmap.Config.RGB_565 直接减少一半内存。

2.不同分辨率的文件夹下放不同分辨率的图片是为了保证内存开销,但相应的会增加包体积,所以需要根据实际情况权衡。

前言

Android 在加载图片的时候一定会考虑到的一个点就是如何防止 OOM,那么一张图片在加载的时候到底会占用多少内存呢?有哪些因素会影响占用的内存呢?知道了这些,我们才能知道可以从哪些点去优化,从而避免 OOM。

一、图片占用内存与宽、高、色彩模式的关系

首先我们准备一张 1920*1080 的图片:

然后我使用的测试机是 Redmi Note 9 Pro,分辨率是 2400*1080,将这张图片放到对应分辨率的目录下,也就是 drawable-xxhdpi 目录下,然后使用不同的配置去加载图片:

override fun initData() {
val optiOns= BitmapFactory.Options()
val bitmap = BitmapFactory.decodeResource(resources, R.drawable.test_xxhdpi, options)
ShowLogUtil.info("width: ${options.outWidth},height: ${options.outHeight},config: ${options.inPreferredConfig},占用内存: ${bitmap.allocationByteCount}")
options.inSampleSize = 2
val bitmap2 = BitmapFactory.decodeResource(resources, R.drawable.test_xxhdpi, options)
ShowLogUtil.info("width: ${options.outWidth},height: ${options.outHeight},config: ${options.inPreferredConfig},占用内存: ${bitmap2.allocationByteCount}")
options.inPreferredCOnfig= Bitmap.Config.RGB_565
val bitmap3 = BitmapFactory.decodeResource(resources, R.drawable.test_xxhdpi, options)
ShowLogUtil.info("width: ${options.outWidth},height: ${options.outHeight},config: ${options.inPreferredConfig},占用内存: ${bitmap3.allocationByteCount}")
}

在上面的代码中,第一次加载图片时使用的是默认配置,第二次加载图片的时候修改了采样率,采样率必须设置为 2 的 n(n≥0) 次幂;第三次加载图片的时候在修改采样率的基础上再修改了色彩模式。观察 log:

可以看到第二次由于我们设置采样率为 2,相当于设置图片压缩比,然后加载时的宽和高都变成了第一次的 1/2,占用内存为第一次的 1/4;第三次在第二次的基础上再设置了色彩模式为 RGB_565,占用内存为第二次的 1/2,第一次的 1/8。

其实还有其他的色彩模式,最后再解释几种色彩模式有什么区别,现在只需要知道 ARGB_8888 是 ARGB 分量都是 8 位,所以一个像素点占 32 位,也就是 4 字节,它是最能保证图片效果的一种模式。而 RGB_565 中 RGB 分量分别使用5位、6位、5位,没有透明度,所以一个像素点占 16 位,也就是 2 字节。

那么我们可以简单的看出,占位内存是与加载宽高,与像素点大小成正比,且倍数关系,而且暂时认为它们的关系为:

占用内存=宽*高*像素点大小

二、图片占用内存与存放文件夹的关系

在日常开发中,UI 在切图的时候通常会切不同分辨率的图片,2 倍图对应 Android 的 xhdpi 目录,3 倍图对应 Android 的 xxhdpi 目录,那么为什么不同资源文件夹需要不同分辨率的图片呢?只用一套图片可不可以呢?我们来看看将同一张图片放到不同目录下,在加载的时候内存占用情况分别如何。

我将上图放在不同目录下,分别命名为不同的名字:

 这里图片的分辨率都是一样的,都是 1920*1080,只是放到了不同目录下,然后我们再分别加载这三张图片。

override fun initData() {
val options1 = BitmapFactory.Options()
val bitmap = BitmapFactory.decodeResource(resources, R.drawable.test_xxhdpi, options1)
ShowLogUtil.info(
"width: ${options1.outWidth},height: ${options1.outHeight},config: ${options1.inPreferredConfig},占用内存: ${bitmap.allocationByteCount},inDensity: ${options1.inDensity},inTargetDensity: ${options1.inTargetDensity}"
)
val options2 = BitmapFactory.Options()
val bitmap2 = BitmapFactory.decodeResource(resources, R.drawable.test_xhdpi, options2)
ShowLogUtil.info(
"width: ${options2.outWidth},height: ${options2.outHeight},config: ${options2.inPreferredConfig},占用内存: ${bitmap2.allocationByteCount},inDensity: ${options2.inDensity},inTargetDensity: ${options2.inTargetDensity}"
)
val options3 = BitmapFactory.Options()
val bitmap3 = BitmapFactory.decodeResource(resources, R.drawable.test_hdpi, options3)
ShowLogUtil.info(
"width: ${options3.outWidth},height: ${options3.outHeight},config: ${options3.inPreferredConfig},占用内存: ${bitmap3.allocationByteCount},inDensity: ${options3.inDensity},inTargetDensity: ${options3.inTargetDensity}"
)
}

在加载三张图的时候分别传入了一个默认的 Options 对象,并在加载图片完成后增加了 Options 的 inDensity 和 inTargetDensity 属性的 log,观察 log:

 可以看到在加载 xhdpi 的图片时内存占用大于 xxhdpi 的内存占用,为 xxhdpi 的 2.25 倍,在加载 hdpi 的图片时内存占用为 xxhdpi 的 4 倍,那这个倍数关系是怎么来的呢?别着急,一会儿通过源码可以找到答案。

我们先修改一下图片,将 xhdpi 目录下的图片分辨率改为 1280*720,hdpi 目录下的图片分辨率改为 960*540,再次运行,观察 log:

这时候我们发现加载不同分辨率下目录的图片的内存占用都是一样的了。

现在我们来查看一下 BitmapFactory.decodeResource() 方法的源码了:

public static Bitmap decodeResource(Resources res, int id, Options opts) {
validate(opts);
Bitmap bm = null;
InputStream is = null;

try {
final TypedValue value = new TypedValue();
// 打开资源流,并初始化一些属性。
is = res.openRawResource(id, value);
// 解析图片资源。
bm = decodeResourceStream(res, value, is, null, opts);
} catch (Exception e) {
/* do nothing.
If the exception happened on open, bm will be null.
If it happened on close, bm is still valid.
*/
} finally {
try {
if (is != null) is.close();
} catch (IOException e) {
// Ignore
}
}
if (bm == null && opts != null && opts.inBitmap != null) {
throw new IllegalArgumentException("Problem decoding into existing bitmap");
}
return bm;
}

decodeResource() 方法中 bitmap 对象是通过 decodeResourceStream() 方法去加载的,继续查看 decodeResourceStream() 方法:

@Nullable
public static Bitmap decodeResourceStream(@Nullable Resources res, @Nullable TypedValue value,
@Nullable InputStream is, @Nullable Rect pad, @Nullable Options opts) {
validate(opts);
// 检查 Options 对象是否为空,为空则创建一个默认对象。
if (opts == null) {
opts = new Options();
}
// 查看 Options 对象是否设置了 inDensity,这里是默认的,所以没有设置,TypedValue 对象在上面的 decodeResource() 方法中也是创建的一个默认对象,所以不为 null,必然进这个 if 代码块。
if (opts.inDensity == 0 && value != null) {
final int density = value.density;
if (density == TypedValue.DENSITY_DEFAULT) {
opts.inDensity = DisplayMetrics.DENSITY_DEFAULT;
} else if (density != TypedValue.DENSITY_NONE) {
// TypedValue 对象在上面的 decodeResource() 方法中调用 Resources.openRawResource() 方法的时候 density 会赋值成对应的资源文件所在目录的 density 值,所以会走到这里,给 Options 的 inDensity 属性赋值。
opts.inDensity = density;
}
}

// Options 的 inTargetDensity 默认没有赋值,所以会进 if 代码块,赋值为手机屏幕的 densityDpi。
if (opts.inTargetDensity == 0 && res != null) {
opts.inTargetDensity = res.getDisplayMetrics().densityDpi;
}

return decodeStream(is, pad, opts);
}

该方法最后调用的是 decodeStream() 方法,继续查看 decodeStream() 方法,这里我只解释关键代码,省略部分代码:

@Nullable
public static Bitmap decodeStream(@Nullable InputStream is, @Nullable Rect outPadding,
@Nullable Options opts) {
...
try {
if (is instanceof AssetManager.AssetInputStream) {
final long asset = ((AssetManager.AssetInputStream) is).getNativeAsset();
bm = nativeDecodeAsset(asset, outPadding, opts, Options.nativeInBitmap(opts),
Options.nativeColorSpace(opts));
} else {
// 这里的资源并非从 assets 目录中加载,所以进入 else 代码块。
bm = decodeStreamInternal(is, outPadding, opts);
}
...
} finally {
Trace.traceEnd(Trace.TRACE_TAG_GRAPHICS);
}
return bm;
}

继续查看 decodeStreamInternal() 方法:

private static Bitmap decodeStreamInternal(@NonNull InputStream is,
@Nullable Rect outPadding, @Nullable Options opts) {
// ASSERT(is != null);
byte [] tempStorage = null;
if (opts != null) tempStorage = opts.inTempStorage;
if (tempStorage == null) tempStorage = new byte[DECODE_BUFFER_SIZE];
return nativeDecodeStream(is, tempStorage, outPadding, opts,
Options.nativeInBitmap(opts),
Options.nativeColorSpace(opts));
}

可以看到该方法中最终调用了 native 层中的 nativeDecodeStream() 方法,所以我们需要继续追到 c++ 层,调用的是 /frameworks/base/core/jni/android/graphics/BitmapFactory.cpp,查看其 nativeDecodeStream 方法:

static jobject nativeDecodeStream(JNIEnv* env, jobject clazz, jobject is, jbyteArray storage,
jobject padding, jobject options) {
jobject bitmap = NULL;
std::unique_ptr stream(CreateJavaInputStreamAdaptor(env, is, storage));
if (stream.get()) {
std::unique_ptr bufferedStream(
SkFrontBufferedStream::Make(std::move(stream), SkCodec::MinBufferedBytesNeeded()));
SkASSERT(bufferedStream.get() != NULL);
bitmap = doDecode(env, std::move(bufferedStream), padding, options);
}
return bitmap;
}

可以看到图片的解码是通过 doDecode() 方法完成,查看该方法,这里我只解释关键代码,省略部分代码:

static jobject doDecode(JNIEnv* env, std::unique_ptr stream,
jobject padding, jobject options) {
// Set default values for the options parameters.
...
// 初始化缩放比为 1.0
float scale = 1.0f;
...
if (options != NULL) {
...
// 获取 java 中的 Options 对象中的 density,targetDensity,计算出缩放比,两者都是在 java 代码中的 decodeResourceStream() 方法赋值的。
if (env->GetBooleanField(options, gOptions_scaledFieldID)) {
const int density = env->GetIntField(options, gOptions_densityFieldID);
const int targetDensity = env->GetIntField(options, gOptions_targetDensityFieldID);
const int screenDensity = env->GetIntField(options, gOptions_screenDensityFieldID);
// 如加载的是 xhdpi 中的图片则 inDensity 为 320,使用的测试机分辨率为 1920*1080,则 targetDensity 为 480,所以 scale 为 480/320=1.5
if (density != 0 && targetDensity != 0 && density != screenDensity) {
scale = (float) targetDensity / density;
}
}
}
...
int scaledWidth = size.width();
int scaledHeight = size.height();
...
// Scale is necessary due to density differences.
if (scale != 1.0f) {
// 需要缩放的话,计算缩放后的宽高。宽高分别乘以缩放比 scale。
willScale = true;
scaledWidth = static_cast(scaledWidth * scale + 0.5f);
scaledHeight = static_cast(scaledHeight * scale + 0.5f);
}
...
if (willScale) {
...
outputBitmap.setInfo(
bitmapInfo.makeWH(scaledWidth, scaledHeight).makeColorType(scaledColorType));
...
} else {
outputBitmap.swap(decodingBitmap);
}
...
// now create the java bitmap
return bitmap::createBitmap(env, defaultAllocator.getStorageObjAndReset(),
bitmapCreateFlags, ninePatchChunk, ninePatchInsets, -1);
}

通过对源码的简单分析,我们可以得出的结论是,如果加载的图片所处的分辨率与手机屏幕分辨率不一样的话,会对图片进行缩放,宽高分别会乘以缩放比重新计算,所以它们的关系为:占用内存=(宽*缩放比)*(高*缩放比)*像素点大小,即

占用内存=宽*高*(手机屏幕密度/资源文件夹密度)²*像素点大小

这也就可以解释为什么不同的资源目录下需要不同分辨率的图片了,主要是为了节省内存。但是如果每一种分辨率都要去适配的话,那势必会增加图片,增加包体积,所以在做图片适配的时候,要根据图片使用频率以及市场手机分辨率分布情况做好利弊权衡。

三、从文件中加载图片和从网络加载图片占用内存

这两种加载图片的方式的话,其实通过刚才的源码分析,并不需要再通过实际运行我们就可以知道,由于没有设置 inDensity 和 inTargetDensity,所以占用内存就是宽*高*像素点大小。由于它不会进行缩放,所以我们在从文件中加载图片和从网络加载图片的时候,尤其需要注意它的内存占用情况,避免 OOM。

并且通过刚才的分析,我们可以知道除了可以设置 inSampleSize 来优化占用内存,也可以通过设置 inDensity 和 inTargetDensity 来通过缩放比间接地优化占用内存。

四、色彩模式

色彩模式在 Android 中主要有四种,介绍这个的文章很多,简单提一下:

Bitmap.Config.ARGB_8888:ARGB 分量都是 8 位,总共占 32 位,还原度最高。

Bitmap.Config.ARGB_4444:ARGB 分量都是 4 位,总共占 16 位,保留透明度,但还原度较低。

Bitmap.Config.RGB_565:没有透明度,RGB 分量分别占 5、6、5 位,总共占 16 位。

Bitmap.Config.ALPHA_8:只保留透明度,总共占 8 位。

这里重点不是为了介绍它们的区别,是要提一点,并不是你设置了那个色彩模式就一定会按照这个色彩模式去加载,需要看图片解码器是否支持,比如我们如果有一个灰度加载图片的需求,那么这时候设置色彩模式为 Bitmap.Config.ALPHA_8 看起来是最简单也最高效的方法,但实际可能并不是这样,如果图片解码器不支持,那么还是会使用 Bitmap.Config.ARGB_8888 去加载,这里是一个坑,还希望出现这种情况的时候,小伙伴们能想到可能有这个原因。

附:inDensity,inTargetDensity,inScreenDensity, inScaled三者关系

通过追查代码,我们可以看到图片资源通过数据流解码时,会根据inDensity,inTargetDensity,inScreenDensity三个值和是否被缩放标识inScaled


  • inDensity:图片本身的像素密度(其实就是图片资源所在的哪个密度文件夹下,如在xxhdpi下就是480,如果在asstes、手机内存/sd卡下,默认是160);

  • inTargetDensity:图片最终在bitmap里的像素密度,如果没有赋值,会将inTargetDensity设置成inScreenDensity;

  • inScreenDensity:手机本身的屏幕密度,如我们测试的三星手机dpi=640, 如果inDensity与inTargetDensity不相等时,就需要对图片进行缩放,inScaled = inTargetDensity/inDensity。

五、总结

1.图片占用内存=宽*高*(手机屏幕密度/资源文件夹密度)²*像素点大小,所以我们在优化图片占用内存的时候主要考虑两个方面:

1)控制图像加载尺寸,这有两种方式:

设置采样率来控制加载的宽高;通过设置 inDensity 和 inTargetDensity 控制缩放比。

2)设置色彩模式来控制像素点大小,如果不需要透明度的图片,可以设置色彩模式为 Bitmap.Config.RGB_565 直接减少一半内存。

2.不同分辨率的文件夹下放不同分辨率的图片是为了保证内存开销,但相应的会增加包体积,所以需要根据实际情况权衡。


推荐阅读
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • 本文介绍如何使用 Android 的 Canvas 和 View 组件创建一个简单的绘图板应用程序,支持触摸绘画和保存图片功能。 ... [详细]
  • 解决TensorFlow CPU版本安装中的依赖问题
    本文记录了在安装CPU版本的TensorFlow过程中遇到的依赖问题及解决方案,特别是numpy版本不匹配和动态链接库(DLL)错误。通过详细的步骤说明和专业建议,帮助读者顺利安装并使用TensorFlow。 ... [详细]
  • 如何使用Ping命令来测试网络连接?当网卡安装和有关参数配置完成后,可以使用ping命令来测试一下网络是否连接成功。以winXP为例1、打开XP下DOS窗口具体操作是点击“开始”菜 ... [详细]
  • 云函数与数据库API实现增删查改的对比
    本文将深入探讨使用云函数和数据库API实现数据操作(增删查改)的不同方法,通过详细的代码示例帮助读者更好地理解和掌握这些技术。文章不仅提供代码实现,还解释了每种方法的特点和适用场景。 ... [详细]
  • 深入解析Java虚拟机(JVM)架构与原理
    本文旨在为读者提供对Java虚拟机(JVM)的全面理解,涵盖其主要组成部分、工作原理及其在不同平台上的实现。通过详细探讨JVM的结构和内部机制,帮助开发者更好地掌握Java编程的核心技术。 ... [详细]
  • 本文将详细介绍多个流行的 Android 视频处理开源框架,包括 ijkplayer、FFmpeg、Vitamio、ExoPlayer 等。每个框架都有其独特的优势和应用场景,帮助开发者更高效地进行视频处理和播放。 ... [详细]
  • 深入理解ExtJS:从入门到精通
    本文详细介绍了ExtJS的功能及其在大型企业前端开发中的应用。通过实例和详细的文件结构解析,帮助初学者快速掌握ExtJS的核心概念,并提供实用技巧和最佳实践。 ... [详细]
  • ElasticSearch 集群监控与优化
    本文详细介绍了如何有效地监控 ElasticSearch 集群,涵盖了关键性能指标、集群健康状况、统计信息以及内存和垃圾回收的监控方法。 ... [详细]
  • 本文详细介绍如何使用 Python 集成微信支付的三种主要方式:Native 支付、APP 支付和 JSAPI 支付。每种方式适用于不同的应用场景,如 PC 网站、移动端应用和公众号内支付等。 ... [详细]
  • 由中科院自动化所、中科院大学及南昌大学联合研究提出了一种新颖的双路径生成对抗网络(TP-GAN),该技术能通过单一侧面照片生成逼真的正面人脸图像,显著提升了不同姿态下的人脸识别效果。 ... [详细]
  • 反向投影技术主要用于在大型输入图像中定位特定的小型模板图像。通过直方图对比,它能够识别出最匹配的区域或点,从而确定模板图像在输入图像中的位置。 ... [详细]
  • PostgreSQL 最新动态 —— 2022年4月6日
    了解 PostgreSQL 社区的最新进展和技术分享 ... [详细]
  • Java中的基本数据类型与包装类解析
    本文探讨了Java编程语言中的8种基本数据类型及其对应的包装类。通过分析这些数据类型的特性和使用场景,以及自动拆装箱机制的实现原理,帮助开发者更好地理解和应用这些概念。 ... [详细]
  • 尝试执行数据库模式加载时遇到错误'Mysql2::Error: 指定的键太长;最大键长度为767字节'。本文将探讨这一问题的成因及解决方案。 ... [详细]
author-avatar
亲爱的某某骗子
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有