热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【阿旭机器学习实战】【19】如何在不减少分辨率的情况下降低图片存储空间?KMeans算法进行图片颜色点分类存储

【阿旭机器学习实战】系列文章主要介绍机器学习的各种算法模型及其实战案例,欢迎点赞,关注共同学习交流。本文使用无监督学习算法K-means聚类算法通过对图





【阿旭机器学习实战】系列文章主要介绍机器学习的各种算法模型及其实战案例,欢迎点赞,关注共同学习交流。


本文使用无监督学习算法K-means聚类算法通过对图片颜色点进行聚类的方式,达到降低图片存储空间的目的



对于KMeans聚类算法原理的介绍,请参考之前的博文《【阿旭机器学习实战】【16】KMeans算法介绍及实战:利用KMeans进行足球队分类》




目录


  • 前言
  • 1. 加载图片及特征处理
  • 2. 进行KMeans聚类建模
  • 3. 使用算法对原始图片进行聚类
  • 4. 展示原始图片与使用64个聚类中心聚类后的图片
  • 5. 图片存储方式



前言

在如今的互联网时代,网络上充满了海量的数据,当然也包括很多图片。因此图像压缩技术对于压缩图像和减少存储空间变得至关重要。

本文我们将使用无监督学习算法K-means聚类算法通过对图片颜色点进行聚类的方式,达到降低图片存储空间的目的

图像由称为像素的几个强度值组成。在彩色图像中, 每个像素为3个字节, 每个像素包含RGB(红-蓝-绿)值, 该值具有红色强度值, 然后是蓝色, 然后是绿色强度值。

具体方法如下:


  1. 使用K均值聚类算法将图片相似的颜色归为不同的” k”个聚类(例如k = 64),每个簇质心(RGB值)代表其各自簇的RGB颜色空间中的颜色矢量。

  2. 根据Kmeans算法找出图片上每个像素点对应的簇质心(RGB值)的标号值。

  3. 图片存储时,我们只需存储每个像素的标签编号, 并保留每个聚类中心的颜色向量的记录,根据编号及这个聚类中心颜色向量就可以告诉该像素所属的集群,即RGB值。

由上述存储方式可以看出,图片单个像素点的存储由RGB的3个字节,变为了只需存储一个标签编号的数字。存储空间只需原来的30%左右。


1. 加载图片及特征处理

from sklearn import datasets
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

# 加载图片
china = datasets.load_sample_image("china.jpg")
plt.imshow(china)

在这里插入图片描述

china.dtype

dtype('uint8')

china.shape

(427, 640, 3)

# 除以255,将像素点的值变为0-1之间
china = china/255

h,w,d = china.shape

# 把像素点展开
img_array = china.reshape((h*w,d))

img_array.shape

(273280, 3)

# 把像素点随机打乱
from sklearn.utils import shuffle
img_array_shuffle = shuffle(img_array,random_state=0)

plt.imshow(img_array_shuffle.reshape((h,w,d)))

在这里插入图片描述


2. 进行KMeans聚类建模

from sklearn.cluster import KMeans
# 用64个聚类来划分这些像素点
km = KMeans(n_clusters=64,random_state=0)

# 仅用前1000个像素点进行模型训练
km.fit(img_array_shuffle[:1000])

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
n_clusters=64, n_init=10, n_jobs=1, precompute_distances='auto',
random_state=0, tol=0.0001, verbose=0)

# 表示这1000个样本对应的聚类标签,展示前100个标签编号
km.labels_[:100]

array([22, 36, 8, 56, 38, 42, 22, 31, 7, 2, 55, 31, 62, 21, 52, 43, 31,
18, 2, 4, 31, 56, 21, 2, 15, 5, 6, 49, 57, 13, 5, 21, 21, 3,
21, 47, 21, 2, 47, 32, 5, 42, 5, 33, 45, 56, 5, 57, 2, 38, 47,
6, 50, 50, 27, 62, 56, 57, 30, 28, 6, 5, 26, 24, 58, 44, 8, 21,
58, 60, 10, 56, 31, 10, 41, 5, 62, 41, 22, 6, 38, 25, 57, 36, 28,
21, 49, 2, 21, 48, 14, 15, 57, 22, 47, 63, 47, 2, 41, 34])

# # 用聚类中心点的颜色来代表这个聚类的颜色,展示前10个聚类中心
km.cluster_centers_[:10]

array([[0.62570806, 0.60261438, 0.53028322],
[0.15546218, 0.1557423 , 0.12829132],
[0.82063983, 0.89896801, 0.98462332],
[0.42039216, 0.43843137, 0.2227451 ],
[0.69527105, 0.74994233, 0.76516724],
[0.92174422, 0.9556336 , 0.99514194],
[0.07058824, 0.0754637 , 0.0508744 ],
[0.28205128, 0.26395173, 0.19638009],
[0.46509804, 0.43372549, 0.36901961],
[0.71328976, 0.41960784, 0.31851852]])

3. 使用算法对原始图片进行聚类

# 用km模型去对原图进行聚类
labels = km.predict(img_array)

创建一个函数用于重新合成图片

def recreate_img(centers,labels,h,w):
# 行数的作用是将每个像素点的值,用对应编号的聚类中心代替
# 按照h和w创建一个空白图片
img = np.zeros((h,w,3))
# 通过for循环,遍历img中每一个点,并且从labels中取出下标对应的聚类重新给img赋值
label_index = 0
for i in range(h):
for j in range(w):
img[i][j] = centers[labels[label_index]]
label_index += 1
return img

img_re = recreate_img(km.cluster_centers_, labels, h, w)

4. 展示原始图片与使用64个聚类中心聚类后的图片

plt.figure(figsize=(12,6))
axes1 = plt.subplot(121)
axes1.imshow(china)
axes1.set_title("Instaces")
axes2 = plt.subplot(122)
axes2.imshow(img_re)
axes2.set_title("64 colors,K-Means")

Text(0.5,1,'64 colors,K-Means')

在这里插入图片描述


5. 图片存储方式
  1. 存储上面的图片每个像素点对应的聚类编号:labels, 形状为:(273280,)
  2. 存储每个聚类编号对应聚类中心RGB值:km.cluster_centers_。形状为:(64, 3)

依据以上labels与km.cluster_centers_,我们即可还原出聚类之后的图片。相对于原始数据存储量降低了60%以上。

如果内容对你有帮助,感谢记得点赞+关注哦!



欢迎关注我的公众号:阿旭算法与机器学习,共同学习交流。
更多干货内容持续更新中…








推荐阅读
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 深入解析JVM垃圾收集器
    本文基于《深入理解Java虚拟机:JVM高级特性与最佳实践》第二版,详细探讨了JVM中不同类型的垃圾收集器及其工作原理。通过介绍各种垃圾收集器的特性和应用场景,帮助读者更好地理解和优化JVM内存管理。 ... [详细]
  • 使用Numpy实现无外部库依赖的双线性插值图像缩放
    本文介绍如何仅使用Numpy库,通过双线性插值方法实现图像的高效缩放,避免了对OpenCV等图像处理库的依赖。文中详细解释了算法原理,并提供了完整的代码示例。 ... [详细]
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 本文探讨了Hive中内部表和外部表的区别及其在HDFS上的路径映射,详细解释了两者的创建、加载及删除操作,并提供了查看表详细信息的方法。通过对比这两种表类型,帮助读者理解如何更好地管理和保护数据。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 最近团队在部署DLP,作为一个技术人员对于黑盒看不到的地方还是充满了好奇心。多次咨询乙方人员DLP的算法原理是什么,他们都以商业秘密为由避而不谈,不得已只能自己查资料学习,于是有了下面的浅见。身为甲方,虽然不需要开发DLP产品,但是也有必要弄明白DLP基本的原理。俗话说工欲善其事必先利其器,只有在懂这个工具的原理之后才能更加灵活地使用这个工具,即使出现意外情况也能快速排错,越接近底层,越接近真相。根据DLP的实际用途,本文将DLP检测分为2部分,泄露关键字检测和近似重复文档检测。 ... [详细]
  • 网易严选Java开发面试:MySQL索引深度解析
    本文详细记录了网易严选Java开发岗位的面试经验,特别针对MySQL索引相关的技术问题进行了深入探讨。通过本文,读者可以了解面试官常问的索引问题及其背后的原理。 ... [详细]
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
author-avatar
一根吃兔子的萝卜
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有