热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

【AI面试题】随机森林算法的原理、随机性、优缺点

1.随机森林算法原理随机森林算法是Bagging集成框架下的一种算法,它同时对训练数据和特征采用随机抽样的方法来构建更加多样化的模型。随机森林具体的算法步骤如下&#x

1. 随机森林算法原理

       随机森林算法是Bagging集成框架下的一种算法,它同时对训练数据和特征采用随机抽样的方法来构建更加多样化的模型。随机森林具体的算法步骤如下:


1, 假设有N个样本,则有放回的随机选择N个样本(每次随机选择一个样本,然后将该样本放回并继续选择)。采用选择好的N个样本用来训练一个决策树,作为决策树根节点处的样本。
2. 假设每个样本有M个属性,在决策树做节点分裂时,随机从这M个属性中选取m个属性,满足条件 m < 3. 决策树形成过程中重复步骤2来计算和分裂节点。一直到节点不能够再分裂,或者达到设置好的阈值(比如树的深度,叶子节点的数量等)为止。注意整个决策树形成过程中没有进行剪枝。
4. 重复步骤1~3建立大量的决策树,这样就构成了随机森林。


在这里插入图片描述


2. 随机森林的随机性体现在哪里

       随机森林的随机性体现在每棵树的训练样本是随机的,树中每个节点的分裂属性集合也是随机选择确定的,如下:
(1)随机采样:随机森林在计算每棵树时,从全部训练样本(样本数为N)中选取一个可能有重复的、大小同样为N的数据集进行训练(即Booststrap采样)。
(2)特征选取的随机性:在节点分裂计算时,随机地选取所有特征的一个子集,用来计算最佳的分割方式。


3. 随机森林算法的优缺点


3,1. 优点


  1. 特征和数据的随机抽样
    (1) 它可以处理很多高维度(特征很多)的数据,并且不用降维,无需做特征选择;
    (2)如果有很大一部分的特征遗失,仍可以潍柴准确度;
    (3)不容易过拟合;
  2. 树模型的特性
    (4)较好的解释性和鲁棒性;
    (5)能够自动发现特征间的高阶关系;
    (6)不需要对数据进行特殊的预处理如归一化;
  3. 算法结构
    (7)训练速度比较快,容易做成并行方法;
    (8)实现起来比较简单。

3.2. 缺点


  1. 随机森林已经被证明在某些噪音较大的分类或回归问题上会过拟合。(决策树的学习本质上进行的是决策节点的分裂,依赖于训练数据的空间分布)
  2. 对于有不同取值的属性的数据,取值划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的。

推荐阅读
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨如何设计一个安全的加密和验证算法,确保生成的密码具有高随机性和低重复率,并提供相应的验证机制。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
  • 在给定的数组中,除了一个数字外,其他所有数字都是相同的。任务是找到这个唯一的不同数字。例如,findUniq([1, 1, 1, 2, 1, 1]) 返回 2,findUniq([0, 0, 0.55, 0, 0]) 返回 0.55。 ... [详细]
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
author-avatar
呼和浩特-时尚范儿
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有