热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

AD预测论文研读系列2

EARLYPREDICTIONOFALZHEIMER’SDISEASEDEMENTIABASEDONBASELINEHIPPOCAMPALMRIAND1-YEARFOLLOW

EARLY PREDICTION OF ALZHEIMER’S DISEASE DEMENTIA BASED ON BASELINE HIPPOCAMPAL MRI AND 1-YEAR FOLLOW-UP COGNITIVE MEASURES USING DEEP RECURRENT NEURAL NETWORKS

(基于基础海马MRI和1年随访认知测量的阿尔茨海默病痴呆早期预测)

原文链接

摘要

多模生物学、影像学和神经心理学标记物已经展示了区分阿尔茨海默病(AD)患者和认知正常的老年人的良好表现。然而,早期预测轻度认知功能障碍(MCI)患者何时和哪些会转变为AD痴呆仍然困难。通过模式分类研究表明,基于纵向数据的模式分类器比基于横截面数据的模式分类器具有更好的分类性能。研究人员开发了一个基于递归神经网络(RNN)的深度学习模型,以学习纵向数据的信息表示和时间动态。将个体受试者的纵向认知测量,与基线海马MRI相结合,建立AD痴呆进展的预后模型。大量MCI受试者的实验结果表明,深度学习模型可以从纵向数据中学习信息性测量,以描述MCI受试者发展为AD痴呆的过程,并且预测模型可以以高精度在早期预测AD进展。最近的研究表明,如果使用纵向而非横截面数据构建分类器,可以获得更好的性能

引言

大多数基于纵向数据的预测模型要求不同的对象在同一时间点上拥有数据。然而,缺乏数据是纵向研究中普遍存在的问题。这种问题通常通过输入缺失的数据来规避。多元功能主成分(MFPC)评分被用来代表纵向制造商处理缺失或不规则数据。然而,mfpc采用了一定的假设来模拟潜在的纵向过程,这可能不适用于不同类型的标记

在本研究中,采用LSTM自动编码器从纵向认知测量中学习紧凑的和信息性的表征,以预测MCI受试者发展为AD痴呆。这些表征可以编码纵向认知测量的时间动态,并表征MCI受试者的进展轨迹,而无需对测量背后的纵向过程作出任何明确的假设。根据所学的表达和海马体MRI基线数据,建立了一个时间到事件的预测模型。特别是采用了Cox回归模型来评估MCI患者发展为AD痴呆的风险。实验结果表明,该模型可以获得有希望的预后表现,认知测量和基于成像的测量可以为预后提供补充信息

方法和材料

为了建立基于纵向数据的AD痴呆早期预测模型,首先训练一个LSTM自动编码器学习每个受试者纵向测量的紧凑表示和时间动态编码。然后,将学习的表示与基线成像数据作为特征相结合,在时间到事件分析设置下建立预后模型

数据

参与人员信息

从ADNI-1、GO&2获得822名MCI受试者在基线、6个月和12个月时的认知测量,包括13项版本的阿尔茨海默病评估量表认知子量表(ADAS-COG13)、Rey听觉语言学习测试(RAVLT)即时、RAVLT学习、功能评估问卷(FAQ)和微型精神状态测试(MMSE)。对受试者进行基线结构MRI扫描,以提取海马成像测量值

基于LSTM的特征表示

考虑到每个受试者在多个时间点的纵向认知测量,学习了信息性和紧凑的表示,以编码受试者的总体纵向认知表现及其跨多个时间点的时间变化/轨迹。LSTM自动编码器为实现这一目标提供了一个理想的工具

LSTM自动编码器

编码器接收多个时间点的输入数据,处理连续时间点之间输入测量值及其时间动态的编码。译码器是利用编码器的学习表示,在不同的时间点,按照相反的顺序逐步重建输入测量值。在对网络进行优化以最小化重构和输入度量之间的偏差的同时,期望编码器的学习表示能够表征输入纵向度量的整体认知性能及其动态

自动编码器包含两个分别用于编码器和解码器的LSTM层。\(f_t和f^`_t\)是在时间点t(t=1,2,3)的输入和重构的认知测量。\(W_{ei}\)是编码器第\(i\)层LSTM的可训练参数,\(W_{di}\)是解码器第{i}层LSTM的可训练参数。可训练的参数包括遗忘门、输入门、单元状态和一个LSTM层内的隐藏状态。以重构测度与输入测度之间的欧氏距离为目标函数,对可训练参数进行优化。选择LSTM层的数量,以在少量可训练参数的情况下实现可推广的性能

在本研究中,认知测量的自动编码器是建立在ADNI-1队列受试者的纵向认知测量基础上的。获得自动编码器后,将编码器应用于ADNI-1和GO&2队列的所有MCI患者,从纵向认知测量中提取其潜在特征,然后用于后续的预后分析

预测建模

考虑到纵向认知信息的潜在表现,将其与基于海马MRI的基线测量相结合,使用Cox回归建立预后模型。特别的,认知测量包括ADAS-COG13、RAVLT即时、RAVLT学习、FAQ和MMSE用于学习LSTM编码的认知测量。使用基于深度学习的预后框架,将基线海马MRI数据的成像特征提取为基于成像的进展为AD的风险。在模型中,年龄、性别、教育年限和基线时的apoeε4状态被用作协变量

时间到事件预测模型的示意图

以ADNI-1的MCI受试者数据为基础,建立Cox回归模型,并以ADNI-GO&2的MCI受试者数据为基础,评价其预后

结果

实验设置

采用了两个LSTM层,每个LSTM层中的隐藏节点数设置为5(LSTM编码的认知度量的维数与每个时间点的输入认知度量的维数相同)。采用Adam优化技术对自动编码器进行优化,将基本学习速率设置为0.01,并在每20000次迭代后将学习速率降低0.1倍,使用逐步策略进行更新。训练程序的最大迭代次数设置为100000,批大小设置为64

实验结果

基于任意一次访问数据的预测模型比基于纵向数据的预测模型预测性能差,基于后时间点数据的预测模型比基于前时间点数据的预测模型具有更好的性能。当LSTM编码的认知表征与来自基础海马MRI数据的基于成像的特征相结合时,获得了最佳的预后表现,表明临床测量和成像数据可以为预后提供补充信息。此外,如果将纵向成像数据纳入预测模型中,可以进一步提高预测性能

结论

在这项研究中,开发了一种基于深度学习的方法来描述认知测量的纵向动力学特征,并建立了基于基础海马MRI测量和学习的纵向动力学的预测模型来预测个体MCI受试者向AD的进展。评价结果表明,该模型在1年的随访期内,对预测MCI受试者发展为AD具有良好的效果

注:
sMCI: stable MCI who remained as MCI at the last visit
pMCI: progressive MCI who converted to AD before the last visit

AD预测论文研读系列1


推荐阅读
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • Ihavetwomethodsofgeneratingmdistinctrandomnumbersintherange[0..n-1]我有两种方法在范围[0.n-1]中生 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • Java Socket 关键参数详解与优化建议
    Java Socket 的 API 虽然被广泛使用,但其关键参数的用途却鲜为人知。本文详细解析了 Java Socket 中的重要参数,如 backlog 参数,它用于控制服务器等待连接请求的队列长度。此外,还探讨了其他参数如 SO_TIMEOUT、SO_REUSEADDR 等的配置方法及其对性能的影响,并提供了优化建议,帮助开发者提升网络通信的稳定性和效率。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • JUC(三):深入解析AQS
    本文详细介绍了Java并发工具包中的核心类AQS(AbstractQueuedSynchronizer),包括其基本概念、数据结构、源码分析及核心方法的实现。 ... [详细]
  • 本文介绍了几种常用的图像相似度对比方法,包括直方图方法、图像模板匹配、PSNR峰值信噪比、SSIM结构相似性和感知哈希算法。每种方法都有其优缺点,适用于不同的应用场景。 ... [详细]
  • [转]doc,ppt,xls文件格式转PDF格式http:blog.csdn.netlee353086articledetails7920355确实好用。需要注意的是#import ... [详细]
  • 本文是Java并发编程系列的开篇之作,将详细解析Java 1.5及以上版本中提供的并发工具。文章假设读者已经具备同步和易失性关键字的基本知识,重点介绍信号量机制的内部工作原理及其在实际开发中的应用。 ... [详细]
  • C++ 异步编程中获取线程执行结果的方法与技巧及其在前端开发中的应用探讨
    本文探讨了C++异步编程中获取线程执行结果的方法与技巧,并深入分析了这些技术在前端开发中的应用。通过对比不同的异步编程模型,本文详细介绍了如何高效地处理多线程任务,确保程序的稳定性和性能。同时,文章还结合实际案例,展示了这些方法在前端异步编程中的具体实现和优化策略。 ... [详细]
  • 如何利用Java 5 Executor框架高效构建和管理线程池
    Java 5 引入了 Executor 框架,为开发人员提供了一种高效管理和构建线程池的方法。该框架通过将任务提交与任务执行分离,简化了多线程编程的复杂性。利用 Executor 框架,开发人员可以更灵活地控制线程的创建、分配和管理,从而提高服务器端应用的性能和响应能力。此外,该框架还提供了多种线程池实现,如固定线程池、缓存线程池和单线程池,以适应不同的应用场景和需求。 ... [详细]
  • 手指触控|Android电容屏幕驱动调试指南
    手指触控|Android电容屏幕驱动调试指南 ... [详细]
author-avatar
xin新的
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有