热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入解析Java多线程同步机制与应用

本文深入探讨了Java多线程环境下的同步机制及其应用,重点介绍了`synchronized`关键字的使用方法和原理。`synchronized`关键字主要用于确保多个线程在访问共享资源时的互斥性和原子性。通过具体示例,如在一个类中使用`synchronized`修饰方法,展示了如何实现线程安全的代码块。此外,文章还讨论了`ReentrantLock`等其他同步工具的优缺点,并提供了实际应用场景中的最佳实践。

synchronized关键字介绍:

synchronized锁定的是对象,这个很重要

例子:

class Sync {  

    public synchronized void test() {  
        System.out.println("test开始..");  
        try {  
            Thread.sleep(1000);  
        } catch (InterruptedException e) {  
            e.printStackTrace();  
        }  
        System.out.println("test结束..");  
    }  
}  

class MyThread extends Thread {  

    public void run() {  
        Sync sync = new Sync();  
        sync.test();  
    }  
}  

public class Main {  

    public static void main(String[] args) {  
        for (int i = 0; i <3; i++) {  
            Thread thread = new MyThread();  
            thread.start();  
        }  
    }  
}  
运行结果:
test开始..
test开始..
test开始..
test结束..
test结束..
test结束..

可以看出来,上面的程序起了三个线程,同时运行Sync类中的test()方法,虽然test()方法加上了synchronized,但是还是同时运行起来,貌似synchronized没起作用。

将test()方法上的synchronized去掉,在方法内部加上synchronized(this):



[java] view plain copy 在CODE上查看代码片派生到我的代码片
public void test() {  
    synchronized(this){  
        System.out.println("test开始..");  
        try {  
            Thread.sleep(1000);  
        } catch (InterruptedException e) {  
            e.printStackTrace();  
        }  
        System.out.println("test结束..");  
    }  
}  
运行结果:
test开始..
test开始..
test开始..
test结束..
test结束..
test结束..

一切还是这么平静,没有看到synchronized起到作用。 

实际上,synchronized(this)以及非static的synchronized方法(至于static synchronized方法请往下看),只能防止多个线程同时执行同一个对象的同步代码段。

synchronized锁住的是括号里的对象,而不是代码。对于非static的synchronized方法,锁的就是对象本身也就是this。

当synchronized锁住一个对象后,别的线程如果也想拿到这个对象的锁,就必须等待这个线程执行完成释放锁,才能再次给对象加锁,这样才达到线程同步的目的。即使两个不同的代码段,都要锁同一个对象,那么这两个代码段也不能在多线程环境下同时运行。

让synchronized锁这个类对应的Class对象。
class Sync {  

    public void test() {  
        synchronized (Sync.class) {  
            System.out.println("test开始..");  
            try {  
                Thread.sleep(1000);  
            } catch (InterruptedException e) {  
                e.printStackTrace();  
            }  
            System.out.println("test结束..");  
        }  
    }  
}  

class MyThread extends Thread {  

    public void run() {  
        Sync sync = new Sync();  
        sync.test();  
    }  
}  

public class Main {  

    public static void main(String[] args) {  
        for (int i = 0; i <3; i++) {  
            Thread thread = new MyThread();  
            thread.start();  
        }  
    }  
}  
运行结果:
test开始..
test结束..
test开始..
test结束..
test开始..
test结束..

上面代码用synchronized(Sync.class)实现了全局锁的效果。

tatic方法可以直接类名加方法名调用,方法中无法使用this,所以它锁的不是this,而是类的Class对象,所以,static synchronized方法也相当于全局锁,相当于锁住了代码段。

分类解释:

synchronized方法

① synchronized方法表面上它只是锁定了当前的方法本身,实际上当synchronized方法起作用的时候,整个对象的带有synchronized的方法都将被锁定,这也就是为什么当一个线程执行一个synchronized方法时,其他的线程除了不能访问当前的同步方法外还并不能访问其他的同步方法,而只能访问非synchronized方法,因为这种锁定是对象级别的。
② 如使在静态方法中用synchronized时,因为这个方法就不是仅属于某个对象而是属于整个类的了,所以一旦一个线程进入了这个代码块就会将这个类的所有对象的所有synchronized方法或synchronized同步代码块锁定,其他的线程就没有办法访问所有这些对象的synchronized方法和synchronized代码块(注意其他线程还是仍然能访问这些对象的非synchronized方法和synchronized代码块的),因此这种锁定是class级别的。

2.synchronized同步代码块是对一个对象作为参数进行锁定。

① 如在使用synchronized(this)时,一旦一个线程进入了这个代码块就会将整个对象的所有synchronized方法或synchronized同步代码块锁定,其他的线程就没有办法访问这个对象的synchronized方法和synchronized代码块(注意其他线程还是仍然能访问这个对象的非synchronized方法和synchronized代码块的)。
② 如在使用synchronized(.class)时,一旦一个线程进入了这个代码块就会将整个类的所有这个synchronized(.class) 同步代码块锁定,其他的线程就没有办法访问这个对象的synchronized(**.class) 代码块,这种锁也是class级别的,但要注意在这种情况下,其他线程仍然是可以访问仅做了synchronized的代码块或非静态方法的,因为它们仅仅是对当前对象的锁定。

正式开始介绍多线程同步:

(1)同步方法:

即有synchronized关键字修饰的方法。 由于java的每个对象都有一个内置锁,当用此关键字修饰方法时,内置锁会保护整个方法。在调用该方法前,需要获得内置锁,否则就处于阻塞状态。


修改后的Bank.java

package threadTest;  

/** 
 * @author ww 
 * 
 */  
public class Bank {  

    private int count =0;//账户余额  

    //存钱  
    public  synchronized void addMoney(int money){  
        count +=money;  
        System.out.println(System.currentTimeMillis()+"存进:"+money);  
    }  

    //取钱  
    public  synchronized void subMoney(int money){  
        if(count-money <0){  
            System.out.println("余额不足");  
            return;  
        }  
        count -=money;  
        System.out.println(+System.currentTimeMillis()+"取出:"+money);  
    }  

    //查询  
    public void lookMoney(){  
        System.out.println("账户余额:"+count);  
    }  
}
再看看运行结果:

余额不足  
账户余额:0  

余额不足  
账户余额:0  

1441790837380存进:100  
账户余额:100  

1441790838380取出:100  
账户余额:0  
1441790838380存进:100  
账户余额:100  

1441790839381取出:100  
账户余额:0
瞬间感觉可以理解了吧。

注: synchronized关键字也可以修饰静态方法,此时如果调用该静态方法,
将会锁住整个类

(2)同步代码块
即有synchronized关键字修饰的语句块。被该关键字修饰的语句块会自动被加上内置锁,从而实现同步

Bank.java代码如下:

package threadTest;  

/** 
 * @author ww 
 * 
 */  
public class Bank {  

    private int count =0;//账户余额  

    //存钱  
    public   void addMoney(int money){  

        synchronized (this) {  
            count +=money;  
        }  
        System.out.println(System.currentTimeMillis()+"存进:"+money);  
    }  

    //取钱  
    public   void subMoney(int money){  

        synchronized (this) {  
            if(count-money <0){  
                System.out.println("余额不足");  
                return;  
            }  
            count -=money;  
        }  
        System.out.println(+System.currentTimeMillis()+"取出:"+money);  
    }  

    //查询  
    public void lookMoney(){  
        System.out.println("账户余额:"+count);  
    }  
}
运行结果如下:

余额不足  
账户余额:0  

1441791806699存进:100  
账户余额:100  

1441791806700取出:100  
账户余额:0  

1441791807699存进:100  
账户余额:100
效果和方法一差不多。

注:同步是一种高开销的操作,因此应该尽量减少同步的内容。通常没有必要同步整个方法,使用synchronized代码块同步关键代码即可。

(3)使用特殊域变量(Volatile)实现线程同步
a.volatile关键字为域变量的访问提供了一种免锁机制
b.使用volatile修饰域相当于告诉虚拟机该域可能会被其他线程更新
c.因此每次使用该域就要重新计算,而不是使用寄存器中的值
d.volatile不会提供任何原子操作,它也不能用来修饰final类型的变量

Bank.java代码如下:

package threadTest;  

/** 
 * @author ww 
 * 
 */  
public class Bank {  

    private volatile int count = 0;// 账户余额  

    // 存钱  
    public void addMoney(int money) {  

        count += money;  
        System.out.println(System.currentTimeMillis() + "存进:" + money);  
    }  

    // 取钱  
    public void subMoney(int money) {  

        if (count - money <0) {  
            System.out.println("余额不足");  
            return;  
        }  
        count -= money;  
        System.out.println(+System.currentTimeMillis() + "取出:" + money);  
    }  

    // 查询  
    public void lookMoney() {  
        System.out.println("账户余额:" + count);  
    }  
}
运行效果怎样呢?

余额不足  
账户余额:0  

余额不足  
账户余额:100  

1441792010959存进:100  
账户余额:100  

1441792011960取出:100  
账户余额:0  

1441792011961存进:100  
账户余额:100

就是因为volatile不能保证原子操作导致的,因此volatile不能代替synchronized。此外volatile会组织编译器对代码优化,因此能不使用它就不适用它吧。它的原理是每次要线程要访问volatile修饰的变量时都是从内存中读取,而不是存缓存当中读取,因此每个线程访问到的变量值都是一样的。这样就保证了同步。

(4)使用重入锁实现线程同步

在JavaSE5.0中新增了一个java.util.concurrent包来支持同步。ReentrantLock类是可重入、互斥、实现了Lock接口的锁, 它与使用synchronized方法和快具有相同的基本行为和语义,并且扩展了其能力。
ReenreantLock类的常用方法有:
ReentrantLock() : 创建一个ReentrantLock实例
lock() : 获得锁
unlock() : 释放锁
注:ReentrantLock()还有一个可以创建公平锁的构造方法,但由于能大幅度降低程序运行效率,不推荐使用
Bank.java代码修改如下:



package threadTest;  

import java.util.concurrent.locks.Lock;  
import java.util.concurrent.locks.ReentrantLock;  

/** 
 * @author ww 
 * 
 */  
public class Bank {  

    private  int count = 0;// 账户余额  

    //需要声明这个锁  
    private Lock lock = new ReentrantLock();  

    // 存钱  
    public void addMoney(int money) {  
        lock.lock();//上锁  
        try{  
        count += money;  
        System.out.println(System.currentTimeMillis() + "存进:" + money);  

        }finally{  
            lock.unlock();//解锁  
        }  
    }  

     // 取钱  
    public void subMoney(int money) {  
        lock.lock();  
        try{  

        if (count - money <0) {  
            System.out.println("余额不足");  
            return;  
        }  
        count -= money;  
        System.out.println(+System.currentTimeMillis() + "取出:" + money);  
        }finally{  
            lock.unlock();  
        }  
    }  

    // 查询  
    public void lookMoney() {  
        System.out.println("账户余额:" + count);  
    }  
}
 余额不足  
账户余额:0  

余额不足  
账户余额:0  

1441792891934存进:100  
账户余额:100  

1441792892935存进:100  
账户余额:200  

1441792892954取出:100  
账户余额:100
效果和前两种方法差不多。

如果synchronized关键字能满足用户的需求,就用synchronized,因为它能简化代码 。如果需要更高级的功能,就用ReentrantLock类,此时要注意及时释放锁,否则会出现死锁,通常在finally代码释放锁

(5)使用局部变量实现线程同步
package threadTest;  

/** 
 * @author ww 
 * 
 */  
public class Bank {  

    private static ThreadLocal count = new ThreadLocal(){  

        @Override  
        protected Integer initialValue() {  
            // TODO Auto-generated method stub  
            return 0;  
        }  

    };  

    // 存钱  
    public void addMoney(int money) {  
        count.set(count.get()+money);  
        System.out.println(System.currentTimeMillis() + "存进:" + money);  

    }  

    // 取钱  
    public void subMoney(int money) {  
        if (count.get() - money <0) {  
            System.out.println("余额不足");  
            return;  
        }  
        count.set(count.get()- money);  
        System.out.println(+System.currentTimeMillis() + "取出:" + money);  
    }  

    // 查询  
    public void lookMoney() {  
        System.out.println("账户余额:" + count.get());  
    }  
}
运行效果:

余额不足  
账户余额:0  

余额不足  
账户余额:0  

1441794247939存进:100  
账户余额:100  

余额不足  
1441794248940存进:100  
账户余额:0  

账户余额:200  

余额不足  
账户余额:0  

1441794249941存进:100  
账户余额:300

如果使用ThreadLocal管理变量,则每一个使用该变量的线程都获得该变量的副本,副本之间相互独立,这样每一个线程都可以随意修改自己的变量副本,而不会对其他线程产生影响。现在明白了吧,原来每个线程运行的都是一个副本,也就是说存钱和取钱是两个账户,知识名字相同而已。所以就会发生上面的效果。

ThreadLocal与同步机制

a.ThreadLocal与同步机制都是为了解决多线程中相同变量的访问冲突问题
b.前者采用以”空间换时间”的方法,后者采用以”时间换空间”的方式

欢迎入群:

公众号IT面试题汇总讨论群

技术分享

如果扫描不进去,加我微信(rdst6029930)拉你。

扫我微信二维码加我

技术分享

欢迎关注《IT面试题汇总》微信订阅号。每天推送经典面试题和面试心得技巧,都是干货!

微信订阅号二维码如下:

技术分享

参考:
https://segmentfault.com/a/1190000003810166
http://blog.csdn.net/xiao__gui/article/details/8188833
http://www.codeceo.com/article/java-multi-thread-sync.html

【53】java的多线程同步剖析


推荐阅读
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 本文介绍了一款用于自动化部署 Linux 服务的 Bash 脚本。该脚本不仅涵盖了基本的文件复制和目录创建,还处理了系统服务的配置和启动,确保在多种 Linux 发行版上都能顺利运行。 ... [详细]
  • Vue 2 中解决页面刷新和按钮跳转导致导航栏样式失效的问题
    本文介绍了如何通过配置路由的 meta 字段,确保 Vue 2 项目中的导航栏在页面刷新或内部按钮跳转时,始终保持正确的 active 样式。具体实现方法包括设置路由的 meta 属性,并在 HTML 模板中动态绑定类名。 ... [详细]
  • 本文探讨了如何通过最小生成树(MST)来计算严格次小生成树。在处理过程中,需特别注意所有边权重相等的情况,以避免错误。我们首先构建最小生成树,然后枚举每条非树边,检查其是否能形成更优的次小生成树。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 2023 ARM嵌入式系统全国技术巡讲旨在分享ARM公司在半导体知识产权(IP)领域的最新进展。作为全球领先的IP提供商,ARM在嵌入式处理器市场占据主导地位,其产品广泛应用于90%以上的嵌入式设备中。此次巡讲将邀请来自ARM、飞思卡尔以及华清远见教育集团的行业专家,共同探讨当前嵌入式系统的前沿技术和应用。 ... [详细]
  • 深入理解 Oracle 存储函数:计算员工年收入
    本文介绍如何使用 Oracle 存储函数查询特定员工的年收入。我们将详细解释存储函数的创建过程,并提供完整的代码示例。 ... [详细]
  • 本文总结了2018年的关键成就,包括职业变动、购车、考取驾照等重要事件,并分享了读书、工作、家庭和朋友方面的感悟。同时,展望2019年,制定了健康、软实力提升和技术学习的具体目标。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 数据库内核开发入门 | 搭建研发环境的初步指南
    本课程将带你从零开始,逐步掌握数据库内核开发的基础知识和实践技能,重点介绍如何搭建OceanBase的开发环境。 ... [详细]
  • 使用 Azure Service Principal 和 Microsoft Graph API 获取 AAD 用户列表
    本文介绍了一段通用代码示例,该代码不仅能够操作 Azure Active Directory (AAD),还可以通过 Azure Service Principal 的授权访问和管理 Azure 订阅资源。Azure 的架构可以分为两个层级:AAD 和 Subscription。 ... [详细]
  • DNN Community 和 Professional 版本的主要差异
    本文详细解析了 DotNetNuke (DNN) 的两种主要版本:Community 和 Professional。通过对比两者的功能和附加组件,帮助用户选择最适合其需求的版本。 ... [详细]
author-avatar
太2真人05
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有