文章目录
- 多人关键点检测
- 多人2d关键点检测的算法(自下而上)
- 1.OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields(IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE2019)
- 2.Single-Network Whole-Body Pose Estimation(ICCV2019)
多人关键点检测
多人关键点检测分自上而下和自下而上两种方法:
自上而下(Top-Down)的人体骨骼关键点检测算法主要包含两个部分,目标检测和单人人体骨骼关键点检测,对于目标检测算法,这里不再进行描述,而对于关键点检测算法,首先需要注意的是关键点局部信息的区分性很弱,即背景中很容易会出现同样的局部区域造成混淆,所以需要考虑较大的感受野区域;其次人体不同关键点的检测的难易程度是不一样的,对于腰部、腿部这类关键点的检测要明显难于头部附近关键点的检测,所以不同的关键点可能需要区别对待;最后自上而下的人体关键点定位依赖于检测算法的提出的Proposals,会出现检测不准和重复检测等现象,大部分相关论文都是基于这三个特征去进行相关改进。
自下而上(Bottom-Up)的人体骨骼关键点检测算法主要包含两个部分,关键点检测和关键点聚类,其中关键点检测和单人的关键点检测方法上是差不多的,区别在于这里的关键点检测需要将图片中所有类别的所有关键点全部检测出来,然后对这些关键点进行聚类处理,将不同人的不同关键点连接在一块,从而聚类产生不同的个体。而这方面的论文主要侧重于对关键点聚类方法的探索,即如何去构建不同关键点之间的关系。
本博文不再介绍自上而下的方法。
多人2d关键点检测的算法(自下而上)
1.OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields(IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE2019)
目前,已经有了许多关于检测的工作。许多的检测方式都是先想办法检测出身体的部位的关节点,然后再连接这些部位点得到人的姿态骨架。本文的工作差不多也是这个套路,但是为了快速的把点连到一起,提出了Part Affinity Fields这个概念来实现快速的关节点连接。
2.Single-Network Whole-Body Pose Estimation(ICCV2019)
本文提出了第一个二维全身姿态估计的单网络方法,它要求同时定位身体、脸、手和脚的关键点。方法在OpenPose的基础上有了很大的改进,OpenPose是目前为止唯一能够在速度和全局精度方面进行全身姿态估计的方法。与OpenPose不同的是,本文的方法不需要为每只手和每一张脸的候选对象运行一个额外的网络,这使得它在多人场景中运行速度大大提高。速度: 在测试时,无论检测到多少人,本文的单网络方法都提供了一个恒定的实时推断,大约比最先进的(OpenPose)的n人图像快n倍。准确性: 方法也比之前的OpenPose产生了更高的准确性,特别是在脸部和手部关键点检测上,更适用于遮挡、模糊和低分辨率的脸部和手部。