1,cf Game with Chips;2,acwing 243.一个简单的整数问题2(线段树);3,亚特兰蒂斯(扫描线);4,维护序列;
题意:给你n x m的棋盘,有k个芯片分布在棋盘上,操作是左右上下各平移一格,要求第i个芯片至少经过一次给定位置;芯片遇到墙后,若仍往墙的方向走,则会不动;多个芯片可以在同一格;
操作次数不超过2nm次;
输出操作序列和操作步数;没有序列输出-1;
思路:直接将所有的芯片先移动到(1,1)在带着整体一个个走,遍历一遍棋盘,必能完成要求;
而且不会超过2nm;
#include
#define rep1(i,a,n) for(ll i&#61;a;i#define rep2(i,a,n) for(ll i&#61;a;i<&#61;n;i&#43;&#43;)
#define per1(i,n,a) for(ll i&#61;n;i>a;i--)
#define per2(i,n,a) for(ll i&#61;n;i>&#61;a;i--)
#define quick_cin() cin.tie(0),cout.tie(0),ios::sync_with_stdio(false)
#define INF 0x3f3f3f3f
#define pb push_back
#define endl "\n"
using namespace std;
typedef long long ll;
typedef pair PII;
typedef double db;
int n,m,k;
string ans;
signed main()
{quick_cin();cin>>n>>m>>k;int maxx&#61;0,maxy&#61;0;rep2(i,1,k){int x,y;cin>>x>>y;maxx&#61;max(maxx,x);maxy&#61;max(maxy,y);}rep2(i,1,maxx-1)ans&#43;&#61;"U";rep2(i,1,maxy-1)ans&#43;&#61;"L";rep2(i,1,k){int edx,edy;cin>>edx>>edy;}rep2(i,1,n){rep2(j,1,m-1){if(i%2)ans&#43;&#61;&#39;R&#39;;else ans&#43;&#61;&#39;L&#39;;}if(i}
2&#xff0c;一个简单的整数问题2&#xff1b;
#include
#define rep1(i,a,n) for(ll i&#61;a;i#define rep2(i,a,n) for(ll i&#61;a;i<&#61;n;i&#43;&#43;)
#define per1(i,n,a) for(ll i&#61;n;i>a;i--)
#define per2(i,n,a) for(ll i&#61;n;i>&#61;a;i--)
#define quick_cin() cin.tie(0),cout.tie(0),ios::sync_with_stdio(false)
#define INF 0x3f3f3f3f
#define pb push_back
#define endl "\n"
using namespace std;
typedef long long ll;
typedef pair PII;
typedef double db;
const int N&#61;1e5&#43;10;
int n,m;
int w[N];
struct node
{int l,r;ll sum,add;
}tr[N*4];
void pushup(int u)
{tr[u].sum&#61;tr[u<<1].sum&#43;tr[u<<1|1].sum;
}
void pushdown(int u)
{node &root&#61;tr[u],&left&#61;tr[u<<1],&right&#61;tr[u<<1|1];if(root.add){left.add&#43;&#61;root.add,left.sum&#43;&#61;(ll)(left.r-left.l&#43;1)*root.add;right.add&#43;&#61;root.add,right.sum&#43;&#61;(ll)(right.r-right.l&#43;1)*root.add;root.add&#61;0;}
}
void build(int u,int l,int r)
{if(l&#61;&#61;r)tr[u]&#61;{l,r,w[r]};else{tr[u]&#61;{l,r};int mid&#61;l&#43;r>>1;build(u<<1,l,mid),build(u<<1|1,mid&#43;1,r);pushup(u);}
}
void modify(int u,int l,int r,int d)
{if(tr[u].l>&#61;l&&tr[u].r<&#61;r){tr[u].sum&#43;&#61;(ll)(tr[u].r-tr[u].l&#43;1)*d;tr[u].add&#43;&#61;d;}else{pushdown(u);int mid&#61;tr[u].l&#43;tr[u].r>>1;if(l<&#61;mid)modify(u<<1,l,r,d);if(r>mid)modify(u<<1|1,l,r,d);pushup(u);}
}
ll query(int u,int l,int r)
{if(tr[u].l>&#61;l&&tr[u].r<&#61;r)return tr[u].sum;else{pushdown(u);int mid&#61;tr[u].l&#43;tr[u].r>>1;ll sum&#61;0;if(l<&#61;mid)sum&#61;query(u<<1,l,r);if(r>mid)sum&#43;&#61;query(u<<1|1,l,r);return sum;}
}
signed main()
{quick_cin();cin>>n>>m;rep2(i,1,n)cin>>w[i];build(1,1,n);char c;int l,r,d;while(m--){cin>>c>>l>>r;if(c&#61;&#61;&#39;C&#39;){cin>>d;modify(1,l,r,d);}else cout<}
3&#xff0c;亚特兰蒂斯&#xff1b;
直接学这种方法是怎么实现和解决问题的&#xff1a;
就是用垂直x轴的线从左往右扫&#xff0c;得到的线段长度*宽度&#xff08;xi-xi-1&#xff09;&#xff0c;即为小矩阵的面积&#xff0c;求和即为所有的面积且不重复&#xff1b;
那么怎么实现线段长度的更新呢&#xff1f;换言之&#xff0c;如何保证线段长度正确合理呢&#xff1f;
对每次输入的矩形&#xff0c;左边打上&#43;1的标记&#xff0c;右边打上-1的标记&#xff0c;这样加1之后&#xff0c;只要该段区间所有地方都>0&#xff0c;就说明该区间可以被当作长度&#xff0c;知道遇到它原来的右边界&#xff0c;然后减去1&#xff0c;表示该矩形不再贡献长度&#xff1b;
由此产生两个操作&#xff1a;
k&#61;1或-1&#xff1b;
统计信息只往下看&#xff01;&#xff01;&#xff1b;
特殊性&#xff1a;
因为只看最终找到的长度&#xff0c;所有区间查询只看tr[1]&#xff0c;根节点的长度信息&#xff1b;
二是操作都是成对的&#xff0c;即&#xff08;1&#xff0c;5&#xff09;&#43;1&#xff0c;之后一定会&#xff08;1&#xff0c;5&#xff09;-1&#xff1b;
综上&#xff0c;不需要pushdown来分裂区间&#xff0c;也可以保证答案的正确性&#xff1b;
因为xy可能是小数&#xff0c;所以需要离散化&#xff01;&#xff01;&#xff1b;
#include
#define rep1(i,a,n) for(ll i&#61;a;i#define rep2(i,a,n) for(ll i&#61;a;i<&#61;n;i&#43;&#43;)
#define per1(i,n,a) for(ll i&#61;n;i>a;i--)
#define per2(i,n,a) for(ll i&#61;n;i>&#61;a;i--)
#define quick_cin() cin.tie(0),cout.tie(0),ios::sync_with_stdio(false)
#define INF 0x3f3f3f3f
#define pb push_back
#define endl "\n"
using namespace std;
typedef long long ll;
typedef pair PII;
typedef double db;
const int N&#61;1e5&#43;10;
int n;
struct segment
{db x,y1,y2;int k;bool operator<(const segment &t)const{return x}seg[N*2];
struct node
{int l,r;int cnt;db len;
}tr[N*8];
vectorys;
int find(db y)
{return lower_bound(ys.begin(),ys.end(),y)-ys.begin();
}
void pushup(int u)
{if(tr[u].cnt)tr[u].len&#61;ys[tr[u].r&#43;1]-ys[tr[u].l];else if(tr[u].l!&#61;tr[u].r){tr[u].len&#61;tr[u<<1].len&#43;tr[u<<1|1].len;}else tr[u].len&#61;0;
}
void build(int u,int l,int r)
{tr[u]&#61;{l,r,0,0};if(l!&#61;r){int mid&#61;l&#43;r>>1;build(u<<1,l,mid),build(u<<1|1,mid&#43;1,r);}
}
void modify(int u,int l,int r,int k)
{if(tr[u].l>&#61;l&&tr[u].r<&#61;r){tr[u].cnt&#43;&#61;k;pushup(u);}else{int mid&#61;tr[u].l&#43;tr[u].r>>1;if(l<&#61;mid)modify(u<<1,l,r,k);if(r>mid)modify(u<<1|1,l,r,k);pushup(u);}
}
signed main()
{quick_cin();int T&#61;0;while(cin>>n,n){ T&#43;&#43;;ys.clear();int j&#61;0;rep1(i,0,n){db x1,y1,x2,y2;cin>>x1>>y1>>x2>>y2;seg[j&#43;&#43;]&#61;{x1,y1,y2,1};seg[j&#43;&#43;]&#61;{x2,y1,y2,-1};ys.pb(y1);ys.pb(y2);}sort(ys.begin(),ys.end());ys.erase(unique(ys.begin(),ys.end()),ys.end());//去重build(1,0,ys.size()-2);//区间比点的个数少1&#xff1b;sort(seg,seg&#43;n*2);double ans&#61;0;rep1(i,0,n*2){if(i>0)ans&#43;&#61;tr[1].len*(seg[i].x-seg[i-1].x);modify(1,find(seg[i].y1),find(seg[i].y2)-1,seg[i].k);}cout<<"Test case #"<}
4&#xff0c;维护序列&#xff1b;
两个懒标记add 和 mul&#xff1b;
sum的维护&#xff1b;用x*mul&#43;add的形式来维护&#xff0c;这样形式上很统一&#xff0c;并且可以互相转化&#xff1b;默认mul是1&#xff0c;add是0&#xff1b;
只乘一个数x&#xff0c;mul&#61;x&#xff0c;add&#61;0&#xff0c;只加一个数x&#xff1a;mul&#61;1&#xff0c;add&#43;&#61;x&#xff1b;
都有&#xff1a;
把mul&#61;a变成ac&#xff0c;add&#61;b变成bc&#43;d&#xff1b;
#include
#define rep1(i,a,n) for(ll i&#61;a;i#define rep2(i,a,n) for(ll i&#61;a;i<&#61;n;i&#43;&#43;)
#define per1(i,n,a) for(ll i&#61;n;i>a;i--)
#define per2(i,n,a) for(ll i&#61;n;i>&#61;a;i--)
#define quick_cin() cin.tie(0),cout.tie(0),ios::sync_with_stdio(false)
#define INF 0x3f3f3f3f
#define pb push_back
#define endl "\n"
using namespace std;
typedef long long ll;
typedef pair PII;
typedef double db;
const int N&#61;1e5&#43;10;
int w[N];
int n,p,m;
struct node
{int l,r;int sum,add,mul;
}tr[N*4];
void pushup(int u)
{tr[u].sum&#61;(tr[u<<1].sum&#43;tr[u<<1|1].sum)%p;
}
void eval(node &t,int add,int mul)
{t.sum&#61;((ll)t.sum*mul&#43;(ll)(t.r-t.l&#43;1)*add)%p;t.mul&#61;((ll)t.mul*mul)%p;t.add&#61;((ll)t.add*mul&#43;add)%p;
}
void pushdown(int u)
{eval(tr[u<<1],tr[u].add,tr[u].mul);eval(tr[u<<1|1],tr[u].add,tr[u].mul);tr[u].add&#61;0,tr[u].mul&#61;1;
}
void build(int u,int l,int r)
{if(l&#61;&#61;r)tr[u]&#61;{l,r,w[r],0,1};else{tr[u]&#61;{l,r,0,0,1};int mid&#61;l&#43;r>>1;build(u<<1,l,mid),build(u<<1|1,mid&#43;1,r);pushup(u);}
}
void modify(int u,int l,int r,int add,int mul)
{if(tr[u].l>&#61;l&&tr[u].r<&#61;r)eval(tr[u],add,mul);else{pushdown(u);int mid&#61;tr[u].l&#43;tr[u].r>>1;if(l<&#61;mid)modify(u<<1,l,r,add,mul);if(r>mid)modify(u<<1|1,l,r,add,mul);pushup(u);}
}
int query(int u,int l,int r)
{if(tr[u].l>&#61;l&&tr[u].r<&#61;r)return tr[u].sum;pushdown(u);int mid&#61;tr[u].l&#43;tr[u].r>>1;int sum&#61;0;if(l<&#61;mid)sum&#61;query(u<<1,l,r);if(r>mid)sum&#61;(sum&#43;query(u<<1|1,l,r))%p;return sum;
}
signed main()
{quick_cin();cin>>n>>p;rep2(i,1,n)cin>>w[i];cin>>m;int c,l,r,d;build(1,1,n);while(m--){cin>>c>>l>>r;if(c&#61;&#61;1){cin>>d;modify(1,l,r,0,d);}else if(c&#61;&#61;2){cin>>d;modify(1,l,r,d,1);}else cout<}