热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

2022杭电多校七FSumire(数位DP+实用技巧)

题目链接:杭电多校7-VirtualJudgevjudge上题目显示的有问题,我下面附上官方题目:样例输入:32201

题目链接:杭电多校7 - Virtual Judge

vjudge上题目显示的有问题,我下面附上官方题目:

样例输入: 

3
2 2 0 1 5
1 4 3 11 45
10 14 11 19 198

样例输出:

6
19
1049

题意:多组样例,每组样例给出五个数k,b,d,l,r,其中b是代表b进制,f(i,b,d)代表在b进制下i的数位中出现数字d的个数。求

 分析:定义f[i][j][1/0][1/0]表示已经统计了前i位有j位是d且当前位有/无限制,有/无前导0的方案数

一开始我按照普通的数位DP思路求解,但是总是超时,然后仔细分析了一下,发现了原来的数位DP还可以具体根据题目优化一下。

比如这道题,我一开始是分两种情况来进行动态转移:

枚举当前填的数字

一种情况是当前有前导0且当前位置填0。

另一种情况就是当前位置填无前导0或者当前位置不填0,这两个合成一种情况即可。

dfs代码是这样写的:

long long dfs(int pos,int cnt,int limit,int lead)
{if(pos&#61;&#61;0) return (cnt&#61;&#61;tt);if(!limit&&!lead&&f[pos][cnt]!&#61;-1) return f[pos][cnt];int up&#61;limit?a[pos]:(b-1);long long ans&#61;0;for(int i&#61;0;i<&#61;up;i&#43;&#43;){if(lead&&i&#61;&#61;0) ans&#43;&#61;dfs(pos-1,cnt,limit&&(i&#61;&#61;a[pos]),lead);else ans&#43;&#61;dfs(pos-1,cnt&#43;(i&#61;&#61;d),limit&&(i&#61;&#61;a[pos]),0); }if(!limit&&!lead) f[pos][cnt]&#61;ans;return ans;
}

后来对这样的代码进行了很多优化发现还是超时&#xff0c;仔细分析了一下才发现当前位置如果不填d或者up或者0&#xff0c;那么填其他任何数字都是一样的&#xff0c;因为只有d才会对最后的答案造成影响&#xff0c;而up会对下一次可以取的数字造成影响&#xff0c;而0可以对前导0造成影响&#xff0c;所以对于一种情况&#xff0c;如果我们可以在0~up中做出选择&#xff0c;去掉d、up、0之外的数选哪个都是一样的&#xff0c;我们可以直接计算一下这样的数字的个数&#xff0c;然后直接令ans&#43;可选数字个数*dfs(pos-1&#xff0c;cnt&#xff0c;0&#xff0c;0)即可&#xff0c;因为选的数既不是上限也不是0&#xff0c;所以会去掉限制和前导0&#xff0c;而且由于选的数不是d&#xff0c;那么也不会对答案造成贡献&#xff0c;所以我们就可以把很多次重复的计算直接一次算出来&#xff0c;这样的话就会极大地优化时间&#xff0c;从而就可以ac&#xff0c;有同学可能会问&#xff1a;我们都记忆化了&#xff0c;算一次和算十次有什么本质区别吗&#xff0c;算完一次之后再算就直接访问数组就可以了啊&#xff0c;为什么这样还会节省时间呢&#xff1f;可以这么想假如说我们刚才讨论的那种不是up和d和0的情况有10000种&#xff0c;那么我们就需要访问10000次数组&#xff0c;这样算下来复杂度会高很多&#xff0c;而我们之前的数位DP题目一般进制数都很少&#xff0c;或者说一般都是10进制的&#xff0c;而这道题b的上界是1e9&#xff0c;这个数还是很大的&#xff0c;所以我们这种优化对于进制数比较大的问题还是很有用的。

这个技巧近适用于贡献与某位数字有直接关系的题目中。

细节见代码&#xff1a;

#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
long long k,b,d;
const int N&#61;65,mod&#61;1e9&#43;7;
long long f[N][N][2][2];//f[i][j][1/0][1/0]表示已经统计了前i位有j位是d且当前位有/无限制&#xff0c;有/无前导0的方案数
long long a[N],tt;
long long qpow(long long a,long long b)
{if(a&#61;&#61;0) return 0;//题目中要求0^0&#61;0long long ans&#61;1;while(b){if(b&1) ans&#61;ans*a%mod;a&#61;a*a%mod;b>>&#61;1;}return ans;
}
long long dfs(int pos,int cnt,int limit,int lead)
{if(!pos) return qpow(cnt,k);if(f[pos][cnt][limit][lead]!&#61;-1) return f[pos][cnt][limit][lead];int up&#61;limit?a[pos]:(b-1);long long ans&#61;0;if(d&#61;&#61;up){if(lead){ans&#43;&#61;dfs(pos-1,cnt,0,1);//有前导0且填0ans&#43;&#61;dfs(pos-1,cnt&#43;1,limit,0);//有前导0填d ans&#43;&#61;(up-1)*dfs(pos-1,cnt,0,0)%mod;//有前导0但不填up和0 }else{ans&#43;&#61;dfs(pos-1,cnt&#43;1,limit,0);//无前导0填dans&#43;&#61;up*dfs(pos-1,cnt,0,0)%mod;//无前导0但不填d} ans%&#61;mod;}else if(d&#61;&#61;0){if(lead){ans&#43;&#61;dfs(pos-1,cnt,0,1);//有前导0且填0ans&#43;&#61;dfs(pos-1,cnt,limit,0);//有前导0且填upans&#43;&#61;(up-1)*dfs(pos-1,cnt,0,0)%mod;//有前导0但不填up和d }else{ans&#43;&#61;dfs(pos-1,cnt&#43;1,0,0);//无前导0且填dans&#43;&#61;dfs(pos-1,cnt,limit,0);//无前导0且填upans&#43;&#61;(up-1)*dfs(pos-1,cnt,0,0)%mod;//无前导0且不填up和d } ans%&#61;mod;}else if(up>d)//d不等于up和0,但是要保证up大于d {if(lead){ans&#43;&#61;dfs(pos-1,cnt,0,1);//有前导0且填0ans&#43;&#61;dfs(pos-1,cnt&#43;1,0,0);//有前导0且填dans&#43;&#61;dfs(pos-1,cnt,limit,0);//有前导0且填upans&#43;&#61;(up-2)*dfs(pos-1,cnt,0,0)%mod;//有前导0但不填up和d和0 }else{ans&#43;&#61;dfs(pos-1,cnt&#43;1,0,0);//无前导0且填dans&#43;&#61;dfs(pos-1,cnt,limit,0);//无前导0且填upans&#43;&#61;(up-1)*dfs(pos-1,cnt,0,0)%mod;//无前导0但不填up和d} ans%&#61;mod;}else//up}
long long solve(long long x)
{memset(f,-1,sizeof f);int pos&#61;0;while(x){a[&#43;&#43;pos]&#61;x%b;x/&#61;b;}return dfs(pos,0,1,1);
}
int main()
{int T;cin>>T;long long l,r;while(T--){scanf("%lld%lld%lld%lld%lld",&k,&b,&d,&l,&r);printf("%lld\n",(solve(r)-solve(l-1)&#43;mod)%mod);}return 0;
}


推荐阅读
  • 题目Link题目学习link1题目学习link2题目学习link3%%%受益匪浅!-----&# ... [详细]
  • Codeforces Round #566 (Div. 2) A~F个人题解
    Dashboard-CodeforcesRound#566(Div.2)-CodeforcesA.FillingShapes题意:给你一个的表格,你 ... [详细]
  • 本题探讨如何通过最大流算法解决农场排水系统的设计问题。题目要求计算从水源点到汇合点的最大水流速率,使用经典的EK(Edmonds-Karp)和Dinic算法进行求解。 ... [详细]
  • 本文详细介绍了 Apache Jena 库中的 Txn.executeWrite 方法,通过多个实际代码示例展示了其在不同场景下的应用,帮助开发者更好地理解和使用该方法。 ... [详细]
  • 本文详细探讨了VxWorks操作系统中双向链表和环形缓冲区的实现原理及使用方法,通过具体示例代码加深理解。 ... [详细]
  • 本文探讨了 Objective-C 中的一些重要语法特性,包括 goto 语句、块(block)的使用、访问修饰符以及属性管理等。通过实例代码和详细解释,帮助开发者更好地理解和应用这些特性。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 本文介绍了如何通过 Maven 依赖引入 SQLiteJDBC 和 HikariCP 包,从而在 Java 应用中高效地连接和操作 SQLite 数据库。文章提供了详细的代码示例,并解释了每个步骤的实现细节。 ... [详细]
  • 本文详细介绍了Java中的访问器(getter)和修改器(setter),探讨了它们在保护数据完整性、增强代码可维护性方面的重要作用。通过具体示例,展示了如何正确使用这些方法来控制类属性的访问和更新。 ... [详细]
  • 本文介绍如何使用阿里云的fastjson库解析包含时间戳、IP地址和参数等信息的JSON格式文本,并进行数据处理和保存。 ... [详细]
  • 本文探讨了 C++ 中普通数组和标准库类型 vector 的初始化方法。普通数组具有固定长度,而 vector 是一种可扩展的容器,允许动态调整大小。文章详细介绍了不同初始化方式及其应用场景,并提供了代码示例以加深理解。 ... [详细]
  • 文件描述符、文件句柄与打开文件之间的关联解析
    本文详细探讨了文件描述符、文件句柄和打开文件之间的关系,通过具体示例解释了它们在操作系统中的作用及其相互影响。 ... [详细]
  • 本题涉及一棵由N个节点组成的树(共有N-1条边),初始时所有节点均为白色。题目要求处理两种操作:一是改变某个节点的颜色(从白变黑或从黑变白);二是查询从根节点到指定节点路径上的第一个黑色节点,若无则输出-1。 ... [详细]
  • 本文探讨了《魔兽世界》中红蓝两方阵营在备战阶段的策略与实现方法,通过代码展示了双方如何根据资源和兵种特性进行战士生产。 ... [详细]
  • 本题通过将每个矩形视为一个节点,根据其相对位置构建拓扑图,并利用深度优先搜索(DFS)或状态压缩动态规划(DP)求解最小涂色次数。本文详细解析了该问题的建模思路与算法实现。 ... [详细]
author-avatar
捕风的默小墨
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有