热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

建立分类感知器二元模型对样本数据进行分类

本文介绍了建立分类感知器二元模型对样本数据进行分类的方法。通过建立线性模型,使用最小二乘、Logistic回归等方法进行建模,考虑到可能性的大小等因素。通过极大似然估计求得分类器的参数,使用牛顿-拉菲森迭代方法求解方程组。同时介绍了梯度上升算法和牛顿迭代的收敛速度比较。最后给出了公式法和logisticregression的实现示例。

给你一堆样本数据(xi,yi),并标上标签[0,1],让你建立模型(分类感知器二元),对于新给的测试数据进行分类。

 

 

要将两种数据分开,这是一个分类问题,建立数学模型,(x,y,z),z指示[0,1],那么假设模型是线性的,如下图所示。有一道线ax+b=y

 

 

那么左右两边数据实际上并不等量,那么这时最小二乘并不好用,因为它没有考虑到可能性的大小等因素。那么用最小二乘建模的比较粗糙。(并没有用到标签数据……?用到了。)而感知器又比较粗暴简单的分为0、1两种情况。实际上属于0的可能性和属于1的可能性都是有可能的,只是大或小而已。因此用Logistic回归建模的方法是最好的?(也许还有神经网络、遗传算法、灰度模型等模型)

x1(x)

x2(y)

z(z)标签

7

31

0

12

22

0

13

42.5

0

15

34

0

18

9

0

22.5

35

0

23

44.5

0

25

25

0

25

34

0

25

54.5

0

32

19

0

34

45

0

36

37

0

36

36

0

45

51

0

40

42

1

48

9

1

48

24

1

54

16

1

56

6

1

56

38

1

61

30.5

1

64.5

23

1

69

13

1

74

40

1

76

4

1

由标签可知这是监督分类。

设每个样本为0和为1的可能性符合sigmoid分布。

设模型x=w0+w1x1+w2x2

按sigmoid函数的形式求出:

 

由于sigmoid函数的定义域为(-∞,∞),值域为(0,1),因此最基本的LR分类器适合对两类目标进行分类。

所以Logistic回归最关键的问题就是研究如何求得w0,w1,…,wn这组权值。这个问题是用极大似然估计来做到。

怎样分类效果最好呢?

下面正式地来讲Logistic回归模型。

考虑具有2个独立变量的向量x=(x1,x2),设条件概率

P(y=1|x)=p为根据观测量相对于某事件x发生的概率。那么Logistic回归模型可以表示为

 

这里称为Logistic函数。其中

 

那么在x条件下y不发生的概率为

 

所以事件发生与不发生的概率之比为

 

这个比值称为事件的发生比(the odds of experiencing an event),简记为odds。

对odds取对数得到

 

可以看出Logistic回归都是围绕一个Logistic函数来展开的。接下来就讲如何用极大似然估计求分类器的参数。

假设有个观测样本,观测值分别为,设为给定条件下得到的概率,同样地,

的概率为,所以得到一个观测值的概率为

因为各个观测样本之间相互独立,那么它们的联合分布为各边缘分布的乘积。得到似然函数为

 

然后我们的目标是求出使这一似然函数的值最大的参数估计,最大似然估计就是求出参数

,使得

取得最大值,对函数取对数得到

 

继续对这分别求偏导,得到个方程,比如现在对参数求偏导,由于

 

所以得到

这样的方程一共有个,所以现在的问题转化为解这个方程形成的方程组。

上述方程比较复杂,一般方法似乎不能解之,所以我们引用了牛顿-拉菲森迭代方法求解。

利用牛顿迭代求多元函数的最值问题以后再讲。。。

简单牛顿迭代法:http://zh.m.wikipedia.org/wiki/%E7%89%9B%E9%A1%BF%E6%B3%95

 

实际上在上述似然函数求最大值时,可以用梯度上升算法,一直迭代下去。梯度上升算法和牛顿迭代相比,收敛速度

慢,因为梯度上升算法是一阶收敛,而牛顿迭代属于二阶收敛。

http://blog.csdn.net/ariessurfer/article/details/41310525

参考文献:

 

1. 公式法

 

>>X=[7 31;12 22;13 22;15 34;18 9;22.5 35;23 44.5;25 25;25 34;25 54.5;32 19;34 45;36 37;36 36;45 51;40 42;48 9;48 24;54 16;56 6;56 38;61 30.5;64.5 23;69 13;74 40;76 4];

>>Y=[-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;1;1;1;1;1;1;1;1;1;1;1]

>>A=inv(X'*X);

>>theta=A*X'*Y;

2. logistic regression

 

?

 


推荐阅读
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 计算机学报精选论文概览(2020-2022)
    本文汇总了2020年至2022年间《计算机学报》上发表的若干重要论文,旨在为即将投稿的研究者提供参考。 ... [详细]
  • 【转】强大的矩阵奇异值分解(SVD)及其应用
    在工程实践中,经常要对大矩阵进行计算,除了使用分布式处理方法以外,就是通过理论方法,对矩阵降维。一下文章,我在 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 吴石访谈:腾讯安全科恩实验室如何引领物联网安全研究
    腾讯安全科恩实验室曾两次成功破解特斯拉自动驾驶系统,并远程控制汽车,展示了其在汽车安全领域的强大实力。近日,该实验室负责人吴石接受了InfoQ的专访,详细介绍了团队未来的重点方向——物联网安全。 ... [详细]
  • 本周三大青年学术分享会即将开启
    由雷锋网旗下的AI研习社主办,旨在促进AI领域的知识共享和技术交流。通过邀请来自学术界和工业界的专家进行在线分享,活动致力于搭建一个连接理论与实践的平台。 ... [详细]
  • 机器学习(ML)三之多层感知机
    深度学习主要关注多层模型,现在以多层感知机(multilayerperceptron,MLP)为例,介绍多层神经网络的概念。隐藏层多层感知机在单层神经网络的基础上引入了一到多个隐藏 ... [详细]
  • 英特尔推出第三代至强可扩展处理器及傲腾持久内存,AI性能显著提升
    英特尔在数据创新峰会上发布了第三代至强可扩展处理器和第二代傲腾持久内存,全面增强AI能力和系统性能。 ... [详细]
  • LeetCode 实战:寻找三数之和为零的组合
    给定一个包含 n 个整数的数组,判断该数组中是否存在三个元素 a、b、c,使得 a + b + c = 0。找出所有满足条件且不重复的三元组。 ... [详细]
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
author-avatar
jimscloudy
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有