热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

149、Spark核心编程进阶之Shuffle相关

shuffle操作原理 是spark中一些特殊的算子操作会触发的一种操作 shuffle操作,会导致大量的数据在不同的机器和节点之间进行传输,因此也是spark中最复杂、最

shuffle操作原理

是spark中一些特殊的算子操作会触发的一种操作
shuffle操作,会导致大量的数据在不同的机器和节点之间进行传输,因此也是spark中最复杂、最消耗性能的一种操作

我们可以通过reduceByKey操作作为一个例子,来理解shuffle操作
先看图

 

13274599-2daa4604817e7ab3.png

shuffle操作原理.png

reduceByKey算子会将上一个RDD中的每个key对应的所有value都聚合成一个value,然后生成一个新的RDD
新的RDD的元素类型就是对的格式,每个key对应一个聚合起来的value
这里最大的问题就在于,对于上一个RDD来说,并不是一个key对应的所有value都是在一个partition中的,也更不太可能说key的所有value都在一台机器上
所以对于这种情况来说,就必须在整个集群中,将各个节点上,同一个key对应的values,统一传输到一个节点上来聚合处理
这个过程中就会发生大量的网络数据的传输

在进行一个key对应的values的聚合时
首先,上一个stage的每个map task就必须保证将自己处理的当前分区中的数据,相同的key写入一个分区文件中,可能会写多个不同的分区文件
接着下一个stage的reduce task就必须从上一个stage所有task所在的机器上,将各个task写入的多个分区文件中,找到属于自己的那个分区文件
接着将属于自己的分区数据,拉取过来,这样就可以保证每个key对应的所有values都汇聚到一个节点上去处理和聚合
这个过程就称之为shuffle

shuffle是分为shuffle write和shuffle read两个部分的,是在两个不同的stage中进行的

shuffle操作过程中进行数据排序

默认情况下,shuffle操作是不会对每个分区中的数据进行排序的

如果想要对每个分区中的数据进行排序,那么可以使用以下三种方法:

  1. 使用mapPartitions算子处理每个partition,对每个partition中的数据进行排序
  2. 使用repartitionAndSortWithinPartitions,对RDD进行重分区,在重分区的过程中同时就进行分区内数据的排序
  3. 使用sortByKey对数据进行全局排序

上述三种方法中,相对来说,mapPartitions的代价比较小,因为不需要进行额外的shuffle操作
repartitionAndSortWithinPartitions和sortByKey可能会进行额外的shuffle操作的,因此性能并不是很高

val rdd2 = rdd1.reduceByKey(_ + _)
rdd2.mapPartitions(tuples.sort)
rdd2.repartitionAndSortWithinPartitions(),重分区,重分区的过程中,就进行分区内的key的排序,重分区的原理和repartition一样
rdd2.sortByKey,直接对rdd按照key进行全局性的排序

spark中会导致shuffle操作

spark中会导致shuffle操作的有以下几种算子

  1. repartition类的操作:比如repartition、repartitionAndSortWithinPartitions、coalesce等
  2. byKey类的操作:比如reduceByKey、groupByKey、sortByKey等
  3. join类的操作:比如join、cogroup等

重分区: 一般会shuffle,因为需要在整个集群中,对之前所有的分区的数据进行随机,均匀的打乱,然后把数据放入下游新的指定数量的分区内
byKey类的操作:因为你要对一个key,进行聚合操作,那么肯定要保证集群中,所有节点上的,相同的key,一定是到同一个节点上进行处理
join类的操作:两个rdd进行join,就必须将相同join key的数据,shuffle到同一个节点上,然后进行相同key的两个rdd数据的笛卡尔乘积

所以对于上述的操作
首先第一原则,就是,能不用shuffle操作,就尽量不用shuffle操作,尽量使用不shuffle的操作
第二原则,就是,如果使用了shuffle操作,那么肯定要进行shuffle的调优,甚至是解决碰到的数据倾斜的问题

shuffle操作对性能消耗的原理

shuffle操作是spark中唯一最最消耗性能的地方
因此也就成了最需要进行性能调优的地方,最需要解决线上报错的地方,也是唯一可能出现数据倾斜的地方
因为shuffle过程中,会产生大量的磁盘IO、数据序列化和反序列化、网络IO

为了实施shuffle操作
spark中才有了stage的概念,在发生shuffle操作的算子中,进行stage的拆分
shuffle操作的前半部分,是上一个stage来进行,也称之为map task,shuffle操作的后半部分,是下一个stage来进行,也称之为reduce task
其中map task负责数据的组织,也就是将同一个key对应的value都写入同一个下游task对应的分区文件中
其中reduce task负责数据的聚合,也就是将上一个stage的task所在节点上,将属于自己的各个分区文件,都拉取过来聚合
这种模型,是参考和模拟了MapReduce的shuffle过程来的

map task会将数据先保存在内存中,如果内存不够时,就溢写到磁盘文件中去
reduce task会读取各个节点上属于自己的分区磁盘文件,到自己节点的内存中,并进行聚合

shuffle操作会消耗大量的内存,因为无论是网络传输数据之前,还是之后,都会使用大量的内存中数据结构来实施聚合操作
比如reduceByKey和aggregateByKey操作,会在map side使用内存中的数据结构进行预先聚合
其他的byKey类的操作,都是在reduce side,使用内存数据结构进行聚合
在聚合过程中,如果内存不够,只能溢写到磁盘文件中去,此时就会发生大量的磁盘IO,降低性能

此外,shuffle过程中,还会产生大量的中间文件,也就是map side写入的大量分区文件
比如Spark 1.3版本,这些中间文件会一致保留着,直到RDD不再被使用,而且被垃圾回收掉了,才会去清理中间文件
这主要是为了,如果要重新计算shuffle后的RDD,那么map side不需要重新做一次磁盘写操作
但是这种情况下,如果我们的应用程序中,一直保持着对RDD的引用,导致很长时间以后才会进行RDD垃圾回收操作
保存中间文件的目录,由spark.local.dir属性指定

内存的消耗、磁盘IO、网络数据传输(IO)

shuffle操作所有相关参数详解以及性能调优

我们可以通过对一系列的参数进行调优,来优化shuffle的性能
spark 1.5.2版本

属性名称默认值属性说明
spark.reducer.maxSizeInFlight48mreduce task的buffer缓冲,代表了每个reduce task每次能够拉取的map side数据最大大小,如果内存充足,可以考虑加大大小,从而减少网络传输次数,提升性能
spark.shuffle.blockTransferServicenettyshuffle过程中,传输数据的方式,两种选项,netty或nio,spark 1.2开始,默认就是netty,比较简单而且性能较高,spark 1.5开始nio就是过期的了,而且spark 1.6中会去除掉
spark.shuffle.compresstrue是否对map side输出的文件进行压缩,默认是启用压缩的,压缩器是由spark.io.compression.codec属性指定的,默认是snappy压缩器,该压缩器强调的是压缩速度,而不是压缩率
spark.shuffle.consolidateFilesfalse默认为false,如果设置为true,那么就会合并map side输出文件,对于reduce task数量特别的情况下,可以极大减少磁盘IO开销,提升性能
spark.shuffle.file.buffer32kmap side task的内存buffer大小,写数据到磁盘文件之前,会先保存在缓冲中,如果内存充足,可以适当加大大小,从而减少map side磁盘IO次数,提升性能
spark.shuffle.io.maxRetries3网络传输数据过程中,如果出现了网络IO异常,重试拉取数据的次数,默认是3次,对于耗时的shuffle操作,建议加大次数,以避免full gc或者网络不通常导致的数据拉取失败,进而导致task lost,增加shuffle操作的稳定性
spark.shuffle.io.retryWait5s每次重试拉取数据的等待间隔,默认是5s,建议加大时长,理由同上,保证shuffle操作的稳定性
spark.shuffle.io.numConnectionsPerPeer1机器之间的可以重用的网络连接,主要用于在大型集群中减小网络连接的建立开销,如果一个集群的机器并不多,可以考虑增加这个值
spark.shuffle.io.preferDirectBufstrue启用堆外内存,可以避免shuffle过程的频繁gc,如果堆外内存非常紧张,则可以考虑关闭这个选项
spark.shuffle.managersortShuffleManager,Spark 1.5以后,有三种可选的,hash、sort和tungsten-sort,sort-based ShuffleManager会更高效实用内存,并且避免产生大量的map side磁盘文件,从Spark 1.2开始就是默认的选项,tungsten-sort与sort类似,但是内存性能更高
spark.shuffle.memoryFraction0.2如果spark.shuffle.spill属性为true,那么该选项生效,代表了executor内存中,用于进行shuffle reduce side聚合的内存比例,默认是20%,如果内存充足,建议调高这个比例,给reduce聚合更多内存,避免内存不足频繁读写磁盘
spark.shuffle.service.enabledfalse启用外部shuffle服务,这个服务会安全地保存shuffle过程中,executor写的磁盘文件,因此executor即使挂掉也不要紧,必须配合spark.dynamicAllocation.enabled属性设置为true,才能生效,而且外部shuffle服务必须进行安装和启动,才能启用这个属性
spark.shuffle.service.port7337外部shuffle服务的端口号,具体解释同上
spark.shuffle.sort.bypassMergeThreshold200对于sort-based ShuffleManager,如果没有进行map side聚合,而且reduce task数量少于这个值,那么就不会进行排序,如果你使用sort ShuffleManager,而且不需要排序,那么可以考虑将这个值加大,直到比你指定的所有task数量都打,以避免进行额外的sort,从而提升性能
spark.shuffle.spilltrue当reduce side的聚合内存使用量超过了spark.shuffle.memoryFraction指定的比例时,就进行磁盘的溢写操作
spark.shuffle.spill.compresstrue同上,进行磁盘溢写时,是否进行文件压缩,使用spark.io.compression.codec属性指定的压缩器,默认是snappy,速度优先

推荐阅读
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 本文探讨了如何通过Service Locator模式来简化和优化在B/S架构中的服务命名访问,特别是对于需要频繁访问的服务,如JNDI和XMLNS。该模式通过缓存机制减少了重复查找的成本,并提供了对多种服务的统一访问接口。 ... [详细]
  • Docker安全策略与管理
    本文探讨了Docker的安全挑战、核心安全特性及其管理策略,旨在帮助读者深入理解Docker安全机制,并提供实用的安全管理建议。 ... [详细]
  • 本文深入探讨了Go语言中的接口型函数,通过实例分析其灵活性和强大功能,帮助开发者更好地理解和运用这一特性。 ... [详细]
  • OBS Studio自动化实践:利用脚本批量生成录制场景
    本文探讨了如何利用OBS Studio进行高效录屏,并通过脚本实现场景的自动生成。适合对自动化办公感兴趣的读者。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • 本指南从零开始介绍Scala编程语言的基础知识,重点讲解了Scala解释器REPL(读取-求值-打印-循环)的使用方法。REPL是Scala开发中的重要工具,能够帮助初学者快速理解和实践Scala的基本语法和特性。通过详细的示例和练习,读者将能够熟练掌握Scala的基础概念和编程技巧。 ... [详细]
  • Maven + Spring + MyBatis + MySQL 环境搭建与实例解析
    本文详细介绍如何使用MySQL数据库进行环境搭建,包括创建数据库表并插入示例数据。随后,逐步指导如何配置Maven项目,整合Spring框架与MyBatis,实现高效的数据访问。 ... [详细]
  • 本文详细介绍了如何在Oracle VM VirtualBox中实现主机与虚拟机之间的数据交换,包括安装Guest Additions增强功能,以及如何利用这些功能进行文件传输、屏幕调整等操作。 ... [详细]
  • publicclassBindActionextendsActionSupport{privateStringproString;privateStringcitString; ... [详细]
  • 本文详细介绍了在Windows系统中如何配置Nginx以实现高效的缓存加速功能,包括关键的配置文件设置和示例代码。 ... [详细]
  • 问题描述现在,不管开发一个多大的系统(至少我现在的部门是这样的),都会带一个日志功能;在实际开发过程中 ... [详细]
  • 如何将955万数据表的17秒SQL查询优化至300毫秒
    本文详细介绍了通过优化SQL查询策略,成功将一张包含955万条记录的财务流水表的查询时间从17秒缩短至300毫秒的方法。文章不仅提供了具体的SQL优化技巧,还深入探讨了背后的数据库原理。 ... [详细]
  • 本文档介绍了如何使用OpenStack命令行工具在Keystone身份服务中创建和管理域、项目、用户及角色。随着Keystone命令向OpenStack命令集的迁移,了解这些新的命令格式对于系统管理员来说至关重要。 ... [详细]
  • Spark与HBase结合处理大规模流量数据结构设计
    本文将详细介绍如何利用Spark和HBase进行大规模流量数据的分析与处理,包括数据结构的设计和优化方法。 ... [详细]
author-avatar
mobiledu2502886333
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有