热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

1298OneTheorem,OneYear

1298-OneTheorem,OneYearPDF(English)StatisticsForumTimeLimit:2second(s)MemoryLimit:32MBAnum
1298 - One Theorem, One Year
  PDF (English) Statistics Forum
Time Limit: 2 second(s) Memory Limit: 32 MB

A number is Almost-K-Prime if it has exactly K prime numbers (not necessarily distinct) in its prime factorization. For example, 12 = 2 * 2 * 3 is an Almost-3-Prime and 32 = 2 * 2 * 2 * 2 * 2 is an Almost-5-Prime number. A number X is called Almost-K-First-P-Prime if it satisfies the following criterions:

  1. X is an Almost-K-Prime and
  2. X has all and only the first P (P ≤ K) primes in its prime factorization.

For example, if K=3 and P=2, the numbers 18 = 2 * 3 * 3 and 12 = 2 * 2 * 3 satisfy the above criterions. And 630 = 2 * 3 * 3 * 5 * 7 is an example of Almost-5-First-4-Pime.

For a given K and P, your task is to calculate the summation of Φ(X) for all integers X such that X is an Almost-K-First-P-Prime.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case starts with a line containing two integers K (1 ≤ K ≤ 500) and P (1 ≤ P ≤ K).

Output

For each case, print the case number and the result modulo 1000000007.

Sample Input Output for Sample Input

3

3 2

5 4

99 45

Case 1: 10

Case 2: 816

Case 3: 49939643

Note
  1. In mathematics Φ(X) means the number of relatively prime numbers with respect to X which are smaller than X. Two numbers are relatively prime if their GCD (Greatest Common Divisor) is 1. For example, Φ(12) = 4, because the numbers that are relatively prime to 12 are: 1, 5, 7, 11.
  2. For the first case, K = 3 and P = 2 we have only two such numbers which are Almost-3-First-2-Prime, 18=2*3*3 and 12=2*2*3. The result is therefore, Φ(12) + Φ(18) = 10.

Problem Setter: Samir Ahmed
Special Thanks: Jane Alam Jan
思路:DP;状态转移方程dp[i][j]=dp[i-1][j-1]+dp[i][j-1];i表示前i个素数,j表示由前i个素数构成数的素数因子的长度,dp[i][j]存的是符合这个要求的所有数的和;
状态解释:当前末尾的数放的是第i个素数,那么它的前一个数放的是它的前一个素数或者是他本身。
所以dp先打个表,再根据欧拉函数n*((1-1/p1)*(1-1/p2).....);因为dp[i][j]是那些素因子都相同数的和,再将(p1*p2*....)的表打好an,把(p1-1)*(p2-1)*....bn打好
所以K=i,P=j;求的直就为dp[j][i]*(an[j]/bn[j])%mod;然后把bn[i]用费马小定理转换成逆元所以最后就为dp[j][i]*(an[j]*bn[j])%mod。
 1 #include
 2 #include
 3 #include
 4 #include 
 5 #include
 6 #include<string.h>
 7 #include
 8 #include
 9 #include
10 using namespace std;
11 typedef  long long LL;
12 typedef unsigned long long ll;
13 bool prime[5000]= {0};
14 int su[600];
15 LL  dp[600][600];
16 LL ola[600];
17 LL ola1[600];
18 const LL mod=1e9+7;
19 LL quick(int n,int m);
20 int main(void)
21 {
22         int i,j,k,p,q;
23         for(i=2; i<=100; i++)
24         {
25                 for(j=i; i*j<=5000; j++)
26                 {
27                         prime[i*j]=true;
28                 }
29         }
30         int ans=1;
31         for(i=2; i<=5000; i++)
32         {
33                 if(!prime[i])
34                 {
35                         su[ans++]=i;
36                 }
37         }
38         memset(dp,0,sizeof(dp));
39         dp[0][0]=1;
40         dp[1][1]=2;
41         for(i=1; i<=500; i++)
42         {
43                 for(j=i; j<=500; j++)
44                 {
45                         dp[i][j]=(((dp[i][j-1]+dp[i-1][j-1])%mod)*(su[i]))%mod;
46                 }
47         }
48         ola[1]=su[1];
49         ola1[1]=su[1]-1;
50         for(i=2; i<=500; i++)
51         {
52                 ola[i]=(su[i]*ola[i-1])%mod;
53                 ola1[i]=(su[i]-1)*ola1[i-1]%mod;
54         }
55         for(i=1; i<=500; i++)
56         {
57                 ola[i]=quick(ola[i],mod-2);
58         }
59         scanf("%d",&k);
60         int s;
61         for(s=1; s<=k; s++)
62         {
63                 scanf("%d %d",&p,&q);
64                 LL cnt=dp[q][p];
65                 LL cns=ola[q];
66                 LL bns=ola1[q];
67                 LL sum=((cnt*cns)%mod*bns)%mod;
68                 printf("Case %d: ",s);
69                 printf("%lld\n",sum);
70         }
71         return 0;
72 }
73 LL quick(int n,int m)
74 {
75         LL ans=1;
76         LL N=n;
77         while(m)
78         {
79                 if(m&1)
80                 {
81                         ans=(ans*N)%mod;
82                 }
83                 N=(N*N)%mod;
84                 m/=2;
85         }
86         return ans;
87 }

1298 - One Theorem, One Year


推荐阅读
  • 本文探讨了如何通过最小生成树(MST)来计算严格次小生成树。在处理过程中,需特别注意所有边权重相等的情况,以避免错误。我们首先构建最小生成树,然后枚举每条非树边,检查其是否能形成更优的次小生成树。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • 深入理解 Oracle 存储函数:计算员工年收入
    本文介绍如何使用 Oracle 存储函数查询特定员工的年收入。我们将详细解释存储函数的创建过程,并提供完整的代码示例。 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • Vue 2 中解决页面刷新和按钮跳转导致导航栏样式失效的问题
    本文介绍了如何通过配置路由的 meta 字段,确保 Vue 2 项目中的导航栏在页面刷新或内部按钮跳转时,始终保持正确的 active 样式。具体实现方法包括设置路由的 meta 属性,并在 HTML 模板中动态绑定类名。 ... [详细]
  • 2023 ARM嵌入式系统全国技术巡讲旨在分享ARM公司在半导体知识产权(IP)领域的最新进展。作为全球领先的IP提供商,ARM在嵌入式处理器市场占据主导地位,其产品广泛应用于90%以上的嵌入式设备中。此次巡讲将邀请来自ARM、飞思卡尔以及华清远见教育集团的行业专家,共同探讨当前嵌入式系统的前沿技术和应用。 ... [详细]
  • 国内BI工具迎战国际巨头Tableau,稳步崛起
    尽管商业智能(BI)工具在中国的普及程度尚不及国际市场,但近年来,随着本土企业的持续创新和市场推广,国内主流BI工具正逐渐崭露头角。面对国际品牌如Tableau的强大竞争,国内BI工具通过不断优化产品和技术,赢得了越来越多用户的认可。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文总结了2018年的关键成就,包括职业变动、购车、考取驾照等重要事件,并分享了读书、工作、家庭和朋友方面的感悟。同时,展望2019年,制定了健康、软实力提升和技术学习的具体目标。 ... [详细]
  • 在计算机技术的学习道路上,51CTO学院以其专业性和专注度给我留下了深刻印象。从2012年接触计算机到2014年开始系统学习网络技术和安全领域,51CTO学院始终是我信赖的学习平台。 ... [详细]
  • CSS 布局:液态三栏混合宽度布局
    本文介绍了如何使用 CSS 实现液态的三栏布局,其中各栏具有不同的宽度设置。通过调整容器和内容区域的属性,可以实现灵活且响应式的网页设计。 ... [详细]
  • Linux 系统启动故障排除指南:MBR 和 GRUB 问题
    本文详细介绍了 Linux 系统启动过程中常见的 MBR 扇区和 GRUB 引导程序故障及其解决方案,涵盖从备份、模拟故障到恢复的具体步骤。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文介绍如何在 Xcode 中使用快捷键和菜单命令对多行代码进行缩进,包括右缩进和左缩进的具体操作方法。 ... [详细]
author-avatar
allmon白_980
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有