热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

10分钟快速入门PyTorch(0)

之前有很多小伙伴私信我说文章思想能看懂,但是pytorch的部分因为没有看过pytorch教程所以一脸懵逼。对此我也表示很无奈,既然大家不愿意去官网看教程,那么我就将我学习pyto

之前有很多小伙伴私信我说文章思想能看懂,但是pytorch的部分因为没有看过pytorch教程所以一脸懵逼。对此我也表示很无奈,既然大家不愿意去官网看教程,那么我就将我学习pytorch的经验写出来,一步一步从0开始让大家学会pytorch,教程比官网的更加简单,同时也增加了更多简单的例子让大家快速上手pytorch,愉快地开始炼丹。

什么?你还不知道pytorch是啥,快点去看看专栏里面的pytorch介绍吧。

推荐在电脑端阅读本篇文章。

环境配置

首先当然是需要安装pytorch了,目前pytorch只支持mac和linux,如果你的电脑是windows,装虚拟机或者双系统。如果想要愉快地炼丹,那么强烈推荐使用linux系统,因为所有的深度学习框架在linux上都有很好的支持,远远好于windows系统,而且linux也没有大家想象中的那么难学,目前linux系统的图形界面让大家上手的时候更加容易。

装完了系统之后就需要安装环境了,首推Anaconda,这是一个科学计算的集成环境,安装完这之后基本所需要的包都有了,而且还提供交互式的jupyter notebook,可以说为我们做实验提供了很好的交互。如果去Anaconda的官网下载速度比较慢,可以去清华镜像下载。

安装完Anaconda之后我们就可以安装pytorch了,进入主页,一步一步来就行了,如果要装GPU版的,需要cuda和cudnn,这个网上有很多教程,可以去看看,如果你只是为了快速上手玩玩pytorch,那么可以不用废时间装GPU版。

pytorch基础

装好了pytorch之后,正式进入我们的教程,pytorch基础部分,这个部分主要是介绍一下pytorch处理的对象以及操作。

Tensor

首先介绍里面最基本的操作对象,tensor

《10分钟快速入门PyTorch (0)》

tensor就是张量的英文,表示多维的矩阵,比如一维就是向量,二维就是一般的矩阵等等,pytorch里面处理的单位就是一个一个的tensor

可以显示的得到其大小

《10分钟快速入门PyTorch (0)》

这个和numpy很相似,同时tensor和numpy.array之间也可以相互转换

《10分钟快速入门PyTorch (0)》
《10分钟快速入门PyTorch (0)》

tensor的运算也很简单,一般的四则运算都是支持的

Variable

pytorch和numpy不一样的地方就来了,就是其提供了自动求导功能,也就是可以自动给你你要的参数的梯度,这个操作又另外一个基本元素提供,Variable

《10分钟快速入门PyTorch (0)》

本质上Variable和Tensor没有区别,不过Variabel会放入一个计算图,然后进行前向传播,反向传播以及自动求导

一个Variable里面包含着三个属性,data,grad和creator,其中creator表示得到这个Variabel的操作,比如乘法或者加法等等,grad表示方向传播的梯度,data表示取出这个Variabel里面的数据

《10分钟快速入门PyTorch (0)》
《10分钟快速入门PyTorch (0)》

这就是一个简单的计算图的例子

神经网络

前面讲了两个操作对象,最后讲一下pytorch里面的模型建立,模型的建立主要依赖于torch.nn,torch.nn包含这个所有神经网络的层的结构

《10分钟快速入门PyTorch (0)》

这就是构建所有神经网络的模板,不管你想构建卷积神经网络还是循环神经网络或者是生成对抗网络都依赖于这个结构

本文所有代码以及后续的教程代码都在github上,强烈推荐进入github下载全部代码进行学习

ok,这次介绍了安装环境,引入了基本的pytorch处理单元,相信大家对pytorch也有了一个基本了解,下节内容预告 线性回归和logistic回归

本文代码已经上传到了github 上

欢迎查看我的知乎专栏,深度炼丹

欢迎访问我的博客


推荐阅读
  • KNN算法在海伦约会预测中的应用
    本文介绍如何使用KNN算法进行海伦约会的预测。我们将从数据导入、数据预处理、数据可视化到最终的模型训练和测试进行全面解析。 ... [详细]
  • ANSI最全介绍linux终端字体改变颜色等ANSI转义序列维基百科,自由的百科全书由于国内不能访问wiki而且国内关于ANSI的介绍都是简短的不能达到,不够完整所以转wiki到此 ... [详细]
  • 计算机视觉初学者指南:如何顺利入门
    本文旨在为计算机视觉领域的初学者提供一套全面的入门指南,涵盖基础知识、技术工具、学习资源等方面,帮助读者快速掌握计算机视觉的核心概念和技术。 ... [详细]
  • 深入浅出:Hadoop架构详解
    Hadoop作为大数据处理的核心技术,包含了一系列组件如HDFS(分布式文件系统)、YARN(资源管理框架)和MapReduce(并行计算模型)。本文将通过实例解析Hadoop的工作原理及其优势。 ... [详细]
  • 尤洋:夸父AI系统——大规模并行训练的深度学习解决方案
    自从AlexNet等模型在计算机视觉领域取得突破以来,深度学习技术迅速发展。近年来,随着BERT等大型模型的广泛应用,AI模型的规模持续扩大,对硬件提出了更高的要求。本文介绍了新加坡国立大学尤洋教授团队开发的夸父AI系统,旨在解决大规模模型训练中的并行计算挑战。 ... [详细]
  • 本文详细探讨了在Python开发中遇到的ImportError: 无法找到名为Crypto.Cipher的模块的问题,并提供了多种解决方案,包括环境配置、库安装和代码调整等方法。 ... [详细]
  • 远程访问用户 Kindle通过电子书实现控制
    介绍自2007年以来,亚马逊已售出数千万台Kindle,令人印象深刻。但这也意味着数以千万计的人可能会因为这些Kindle中的软件漏洞而被黑客入侵。他 ... [详细]
  • Python安全实践:Web安全与SQL注入防御
    本文旨在介绍Web安全的基础知识,特别是如何使用Python和相关工具来识别和防止SQL注入攻击。通过实际案例分析,帮助读者理解SQL注入的危害,并掌握有效的防御策略。 ... [详细]
  • 图神经网络模型综述
    本文综述了图神经网络(Graph Neural Networks, GNN)的发展,从传统的数据存储模型转向图和动态模型,探讨了模型中的显性和隐性结构,并详细介绍了GNN的关键组件及其应用。 ... [详细]
  • 深度学习与神经网络课程总结
    本文档总结了神经网络和深度学习课程中的关键概念和理论,包括机器学习的基本要素、算法类型以及数据特征表示等。 ... [详细]
  • 探索CNN的可视化技术
    神经网络的可视化在理论学习与实践应用中扮演着至关重要的角色。本文深入探讨了三种有效的CNN(卷积神经网络)可视化方法,旨在帮助读者更好地理解和优化模型。 ... [详细]
  • 知识图谱与图神经网络在金融科技中的应用探讨
    本文详细介绍了融慧金科AI Lab负责人张凯博士在2020爱分析·中国人工智能高峰论坛上的演讲,探讨了知识图谱与图神经网络模型如何在金融科技领域发挥重要作用。 ... [详细]
  • 龙蜥社区开发者访谈:技术生涯的三次蜕变 | 第3期
    龙蜥社区的开发者们通过自己的实践和经验,推动着开源技术的发展。本期「龙蜥开发者说」聚焦于一位资深开发者的三次技术转型,分享他在龙蜥社区的成长故事。 ... [详细]
  • Android开发经验分享:优化用户体验的关键因素
    随着Android市场的不断扩展,用户对于移动应用的期望也在不断提高。本文探讨了在Android开发中如何优化用户体验,以及为何用户体验的重要性超过了技术本身。 ... [详细]
  • VSCode中实现大型项目函数跳转的方法
    在处理大型代码项目时,简单的C/C++插件往往无法满足需求。本文介绍如何通过配置GNU Global等工具,在VSCode中实现高效的函数跳转。 ... [详细]
author-avatar
浪子烦恼猪_309
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有