热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

1.PyTorch简介为什么选择PyTorch以及安装过程

目录1.写在前面2.为什么是PyTorch3.神经网络在做些什么?4.PyTorchVSTensorflow5.PyTorch安装1.写在前面从今天开始我们

目录

1.写在前面

2.为什么是PyTorch

3.神经网络在做些什么?

4.PyTorch VS Tensorflow

5.PyTorch安装



1.写在前面

        从今天开始我们将进行一个崭新的模块,因为这个学习了深度学习的课程,基本工程的实现需要学习一门深度学习工具,对比Tensorflow和PyTorch,我们首先学习一下PyTorch的基本知识。

2.为什么是PyTorch

        选择PyTorch肯定是因为这个框架对初学者比较友好,PyTorch是Torch在Python上面的一个延伸,Torch是一个神经网络库,以前是在Lua上面开发的,但是Lua又不是特别流行,所以开发团队将Torch移植到了Python上面,也引起了社会巨大反响。

        著名的 Facebook, twitter 等都在使用它, 这就说明 PyTorch 的确是好用的, 而且是值得推广。而且如果你知道 Numpy, PyTorch 说他就是在神经网络领域可以用来替换 numpy 的模块。

3.神经网络在做些什么?

        神经网络在学习拟合线条(回归问题)

        神经网络在区分数据(分类问题)

4.PyTorch VS Tensorflow

        据 PyTorch 自己介绍, 他们家的最大优点就是建立的神经网络是动态的, 对比静态的 Tensorflow, 他能更有效地处理一些问题, 比如说 RNN 变化时间长度的输出. 而我认为, 各家有各家的优势和劣势, 所以我们要以中立的态度. 两者都是大公司, Tensorflow 自己说自己在分布式训练上下了很大的功夫, 那我就默认 Tensorflow 在这一点上要超出 PyTorch, 但是 Tensorflow 的静态计算图使得他在 RNN 上有一点点被动 (虽然它用其他途径解决了), 不过用 PyTorch 的时候, 你会对这种动态的 RNN 有更好的理解.

        而且 Tensorflow 的高度工业化, 它的底层代码… 你是看不懂的. PyTorch 好那么一点点, 如果你深入 API, 你至少能比看 Tensorflow 多看懂一点点 PyTorch 的底层在干嘛.

        最后我的建议就是:

  • 如果你是学生, 随便选一个学, 或者稍稍偏向 PyTorch, 因为写代码的时候应该更好理解. 懂了一个模块, 转换 Tensorflow 或者其他的模块都好说.
  • 如果是上班了, 跟着你公司来, 公司用什么, 你就用什么, 不要脱群.

5.PyTorch安装

        PyTorch的安装十分简单,直接在网页上就可以选择合适的安装方式:

        PyTorch 会安装两个模块, 一个是 torch, 一个 torchvision, torch 是主模块, 用来搭建神经网络的, torchvision 是辅模块, 有数据库, 还有一些已经训练好的神经网络等着你直接用, 比如 (VGG, AlexNet, ResNet)。


推荐阅读
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 为何Serverless将成为未来十年的主导技术领域?
    为何Serverless将成为未来十年的主导技术领域? ... [详细]
  • 本文探讨了使用Python实现监控信息收集的方法,涵盖从基础的日志记录到复杂的系统运维解决方案,旨在帮助开发者和运维人员提升工作效率。 ... [详细]
  • 本文介绍了一种方法,通过使用Python的ctypes库来调用C++代码。具体实例为实现一个简单的加法器,并详细说明了从编写C++代码到编译及最终在Python中调用的全过程。 ... [详细]
  • 本文介绍了如何使用 Google Colab 的免费 GPU 资源进行深度学习应用开发。Google Colab 是一个无需配置即可使用的云端 Jupyter 笔记本环境,支持多种深度学习框架,并且提供免费的 GPU 计算资源。 ... [详细]
  • 目录预备知识导包构建数据集神经网络结构训练测试精度可视化计算模型精度损失可视化输出网络结构信息训练神经网络定义参数载入数据载入神经网络结构、损失及优化训练及测试损失、精度可视化qu ... [详细]
  • 在Conda环境中高效配置并安装PyTorch和TensorFlow GPU版的方法如下:首先,创建一个新的Conda环境以避免与基础环境发生冲突,例如使用 `conda create -n pytorch_gpu python=3.7` 命令。接着,激活该环境,确保所有依赖项都正确安装。此外,建议在安装过程中指定CUDA版本,以确保与GPU兼容性。通过这些步骤,可以确保PyTorch和TensorFlow GPU版的顺利安装和运行。 ... [详细]
  • TensorFlow Lite在移动设备上的部署实践与优化笔记
    近期在探索如何将服务器端的模型迁移到移动设备上,并记录了一些关键问题和解决方案。本文假设读者具备以下基础知识:了解TensorFlow的计算图(Graph)、图定义(GraphDef)和元图定义(MetaGraphDef)。此外,文中还详细介绍了模型转换、性能优化和资源管理等方面的实践经验,为开发者提供有价值的参考。 ... [详细]
  • 利用Python与Android进行高效移动应用开发
    通过结合Python和Android,可以实现高效的移动应用开发。首先,需要安装Scripting Layer for Android (SL4A),这是一个开源项目,旨在为Android系统提供脚本语言支持。SL4A不仅简化了开发流程,还允许开发者使用Python等高级语言编写脚本,从而提高开发效率和代码可维护性。此外,SL4A还支持多种其他脚本语言,进一步扩展了其应用范围。通过这种方式,开发者可以快速构建功能丰富的移动应用,同时保持较高的灵活性和可扩展性。 ... [详细]
  • 优化后的标题:PHP分布式高并发秒杀系统设计与实现
    PHPSeckill是一个基于PHP、Lua和Redis构建的高效分布式秒杀系统。该项目利用php_apcu扩展优化性能,实现了高并发环境下的秒杀功能。系统设计充分考虑了分布式架构的可扩展性和稳定性,适用于大规模用户同时访问的场景。项目代码已开源,可在Gitee平台上获取。 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 开发心得:利用 Redis 构建分布式系统的轻量级协调机制
    开发心得:利用 Redis 构建分布式系统的轻量级协调机制 ... [详细]
  • 本文提供了PyTorch框架中常用的预训练模型的下载链接及详细使用指南,涵盖ResNet、Inception、DenseNet、AlexNet、VGGNet等六大分类模型。每种模型的预训练参数均经过精心调优,适用于多种计算机视觉任务。文章不仅介绍了模型的下载方式,还详细说明了如何在实际项目中高效地加载和使用这些模型,为开发者提供全面的技术支持。 ... [详细]
  • 在Windows命令行中,通过Conda工具可以高效地管理和操作虚拟环境。具体步骤包括:1. 列出现有虚拟环境:`conda env list`;2. 创建新虚拟环境:`conda create --name 环境名`;3. 删除虚拟环境:`conda env remove --name 环境名`。这些命令不仅简化了环境管理流程,还提高了开发效率。此外,Conda还支持环境文件导出和导入,方便在不同机器间迁移配置。 ... [详细]
  • 本文详细介绍了在Windows操作系统上使用Python 3.8.5编译支持CUDA 11和cuDNN 8.0.2的TensorFlow 2.3的步骤。文章不仅提供了详细的编译指南,还分享了编译后的文件下载链接,方便用户快速获取所需资源。此外,文中还涵盖了常见的编译问题及其解决方案,确保用户能够顺利进行编译和安装。 ... [详细]
author-avatar
lx比比2502869217
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有