热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

06节、离线计算系统_第1天(HADOOP快速入门)

示例代码下载https:download.csdn.netdownloadieiqny1108530631.HADOOP背景介绍1.1什么是HADOOP1.HADOOP是apac

示例代码下载https://download.csdn.net/download/ieiqny1/10853063

1. HADOOP背景介绍
1.1 什么是HADOOP
    1.    HADOOP是apache旗下的一套开源软件平台
    2.    HADOOP提供的功能:利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理
    3.    HADOOP的核心组件有
        A.    HDFS(分布式文件系统)
        B.    YARN(运算资源调度系统)
        C.    MAPREDUCE(分布式运算编程框架)
4.    广义上来说,HADOOP通常是指一个更广泛的概念——HADOOP生态圈
    1.2 HADOOP产生背景
        1.    HADOOP最早起源于Nutch。Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取、索引、查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题——如何解决数十亿网页的存储和索引问题。
        2.    2003年、2004年谷歌发表的两篇论文为该问题提供了可行的解决方案。
        ——分布式文件系统(GFS),可用于处理海量网页的存储
        ——分布式计算框架MAPREDUCE,可用于处理海量网页的索引计算问题。
        3.    Nutch的开发人员完成了相应的开源实现HDFS和MAPREDUCE,并从Nutch中剥离成为独立项目HADOOP,到2008年1月,HADOOP成为Apache顶级项目,迎来了它的快速发展期。
1.3 HADOOP在大数据、云计算中的位置和关系
    1.    云计算是分布式计算、并行计算、网格计算、多核计算、网络存储、虚拟化、负载均衡等传统计算机技术和互联网技术融合发展的产物。借助IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)等业务模式,把强大的计算能力提供给终端用户。

    2.    现阶段,云计算的两大底层支撑技术为“虚拟化”和“大数据技术”

    3.    而HADOOP则是云计算的PaaS层的解决方案之一,并不等同于PaaS,更不等同于云计算本身。


1.4 国内外HADOOP应用案例介绍
    1、HADOOP应用于数据服务基础平台建设
     

    2/HADOOP用于用户画像
     

    3、HADOOP用于网站点击流日志数据挖掘
    
1.5 国内HADOOP的就业情况分析
    1、    HADOOP就业整体情况
        A.    大数据产业已纳入国家十三五规划
        B.    各大城市都在进行智慧城市项目建设,而智慧城市的根基就是大数据综合平台
        C.    互联网时代数据的种类,增长都呈现爆发式增长,各行业对数据的价值日益重视
        D.    相对于传统JAVAEE技术领域来说,大数据领域的人才相对稀缺
        E.    随着现代社会的发展,数据处理和数据挖掘的重要性只会增不会减,因此,大数据技术是一个尚在蓬勃发展且具有长远前景的领域


2、    HADOOP就业职位要求大数据是个复合专业,包括应用开发、软件平台、算法、数据挖掘等,因此,大数据技术领域的就业选择是多样的,但就HADOOP而言,通常都需要具备以下技能或知识:
    A.    HADOOP分布式集群的平台搭建
    B.    HADOOP分布式文件系统HDFS的原理理解及使用
    C.    HADOOP分布式运算框架MAPREDUCE的原理理解及编程
    D.    Hive数据仓库工具的熟练应用
    E.    Flume、sqoop、oozie等辅助工具的熟练使用
    F.    Shell/python等脚本语言的开发能力


1.6 HADOOP生态圈以及各组成部分的简介
 
各组件简介 


    重点组件:
    HDFS:分布式文件系统
    MAPREDUCE:分布式运算程序开发框架
    HIVE:基于大数据技术(文件系统+运算框架)的SQL数据仓库工具

    HBASE:基于HADOOP的分布式海量数据库
    ZOOKEEPER:分布式协调服务基础组件
    Mahout:基于mapreduce/spark/flink等分布式运算框架的机器学习算法库
    Oozie:工作流调度框架
    Sqoop:数据导入导出工具
    Flume:日志数据采集框架


2 分布式系统概述
    注:由于大数据技术领域的各类技术框架基本上都是分布式系统,因此,理解hadoop、storm、spark等技术框架,都需要具备基本的分布式系统概念

2.1 分布式软件系统(Distributed Software Systems)
    该软件系统会划分成多个子系统或模块,各自运行在不同的机器上,子系统或模块之间通过网络通信进行协作,实现最终的整体功能
   比如分布式操作系统、分布式程序设计语言及其编译(解释)系统、分布式文件系统和分布式数据库系统等。

2.2 分布式软件系统举例:solrcloud 
    A.    一个solrcloud集群通常有多台solr服务器
    B.    每一个solr服务器节点负责存储整个索引库的若干个shard(数据分片)
    C.    每一个shard又有多台服务器存放若干个副本互为主备用
    D.    索引的建立和查询会在整个集群的各个节点上并发执行
    E.    solrcloud集群作为整体对外服务,而其内部细节可对客户端透明
    总结:利用多个节点共同协作完成一项或多项具体业务功能的系统就是分布式系统。

2.3 分布式应用系统模拟开发
    需求:可以实现由主节点将运算任务发往从节点,并将各从节点上的任务启动;
    程序清单:
           AppMaster
          AppSlave/APPSlaveThread
         Task
    程序运行逻辑流程:
     

3. 离线数据分析流程介绍
    注:本环节主要感受数据分析系统的宏观概念及处理流程,初步理解hadoop等框架在其中的应用环节,不用过于关注代码细节一个应用广泛的数据分析系统:“web日志数据挖掘”
 
3.1 需求分析
    3.1.1 案例名称
        “网站或APP点击流日志数据挖掘系统” 。

    3.1.2 案例需求描述
        “Web点击流日志”包含着网站运营很重要的信息,通过日志分析,我们可以知道网站的访问量,哪个网页访问人数最多,哪个网页最有价值,广告转化率、访客的来源信息,访客的终端信息等。

    3.1.3 数据来源
        本案例的数据主要由用户的点击行为记录
        获取方式:在页面预埋一段js程序,为页面上想要监听的标签绑定事件,只要用户点击或移动到标签,即可触发ajax请求到后台servlet程序,用log4j记录下事件信息,从而在web服务器(nginx、tomcat等)上形成不断增长的日志文件。
        形如:
        58.215.204.118 - - [18/Sep/2013:06:51:35 +0000] "GET /wp-includes/js/jquery/jquery.js?ver=1.10.2 HTTP/1.1" 304 0 "http://blog.fens.me/nodejs-socketio-chat/" "Mozilla/5.0 (Windows NT 5.1; rv:23.0) Gecko/20100101 Firefox/23.0"



3.2 数据处理流程
3.2.1 流程图解析
    本案例跟典型的BI系统极其类似,整体流程如下:
     
    但是,由于本案例的前提是处理海量数据,因而,流程中各环节所使用的技术则跟传统BI完全不同,后续课程都会一一讲解:
        1)    数据采集:定制开发采集程序,或使用开源框架FLUME
        2)    数据预处理:定制开发mapreduce程序运行于hadoop集群
        3)    数据仓库技术:基于hadoop之上的Hive
        4)    数据导出:基于hadoop的sqoop数据导入导出工具
        5)    数据可视化:定制开发web程序或使用kettle等产品
        6)    整个过程的流程调度:hadoop生态圈中的oozie工具或其他类似开源产品

3.2.2 项目技术架构图
  
3.2.3 项目相关截图(感性认识,欣赏即可)
    a)    Mapreudce程序运行
     

    b)    在Hive中查询数据
     

    c)    将统计结果导入mysql
    ./sqoop export --connect jdbc:mysql://localhost:3306/weblogdb --username root --password root  --table t_display_xx  --export-dir /user/hive/warehouse/uv/dt=2014-08-03

3.3 项目最终效果
    经过完整的数据处理流程后,会周期性输出各类统计指标的报表,在生产实践中,最终需要将这些报表数据以可视化的形式展现出来,本案例采用web程序来实现数据可视化
    效果如下所示:
     


4. 集群搭建
4.1 HADOOP集群搭建
4.1.1集群简介
    HADOOP集群具体来说包含两个集群:HDFS集群和YARN集群,两者逻辑上分离,但物理上常在一起
    HDFS集群:
    负责海量数据的存储,集群中的角色主要有 NameNode / DataNode
    YARN集群:
    负责海量数据运算时的资源调度,集群中的角色主要有 ResourceManager /NodeManager
    (那mapreduce是什么呢?它其实是一个应用程序开发包)

    本集群搭建案例,以5节点为例进行搭建,角色分配如下:
    hdp-node-01    NameNode  SecondaryNameNode
    hdp-node-02    ResourceManager 
    hdp-node-03        DataNode    NodeManager
    hdp-node-04        DataNode    NodeManager
    hdp-node-05        DataNode    NodeManager
    部署图如下:
 
4.1.2服务器准备
本案例使用虚拟机服务器来搭建HADOOP集群,所用软件及版本:
    Vmware 11.0
    Centos  6.5  64bit

4.1.3网络环境准备
    采用NAT方式联网
    网关地址:192.168.33.1
    3个服务器节点IP地址:192.168.33.101、192.168.33.102、192.168.33.103
    子网掩码:255.255.255.0
4.1.4服务器系统设置
    添加HADOOP用户
    为HADOOP用户分配sudoer权限
    同步时间
    设置主机名
    hdp-node-01
    hdp-node-02
    hdp-node-03
    配置内网域名映射:
    192.168.33.101          hdp-node-01
    192.168.33.102          hdp-node-02
    192.168.33.103          hdp-node-03
    配置ssh免密登陆
    配置防火墙

4.1.5 Jdk环境安装
    上传jdk安装包
    规划安装目录  /home/hadoop/apps/jdk_1.7.65
    解压安装包
    配置环境变量 /etc/profile


4.1.6 HADOOP安装部署
    上传HADOOP安装包
    规划安装目录  /home/hadoop/apps/hadoop-2.6.1
    解压安装包
    修改配置文件  $HADOOP_HOME/etc/hadoop/
最简化配置如下:
vi  hadoop-env.sh
# The java implementation to use.
export JAVA_HOME=/home/hadoop/apps/jdk1.7.0_51

vi  core-site.xml


fs.defaultFS
hdfs://hdp-node-01:9000


hadoop.tmp.dir
/home/HADOOP/apps/hadoop-2.6.1/tmp


vi  hdfs-site.xml


dfs.namenode.name.dir
/home/hadoop/data/name


dfs.datanode.data.dir
/home/hadoop/data/data


dfs.replication
3


dfs.secondary.http.address
hdp-node-01:50090

vi  mapred-site.xml


mapreduce.framework.name
yarn

vi  yarn-site.xml


yarn.resourcemanager.hostname
hadoop01


yarn.nodemanager.aux-services
mapreduce_shuffle

vi  salves
hdp-node-01
hdp-node-02
hdp-node-03


4.1.7 启动集群
初始化HDFS
bin/hadoop  namenode  -format

启动HDFS
sbin/start-dfs.sh

启动YARN
sbin/start-yarn.sh
4.1.8 测试
1、上传文件到HDFS
从本地上传一个文本文件到hdfs的/wordcount/input目录下
[HADOOP@hdp-node-01 ~]$ HADOOP fs -mkdir -p /wordcount/input
[HADOOP@hdp-node-01 ~]$ HADOOP fs -put /home/HADOOP/somewords.txt  /wordcount/input

2、运行一个mapreduce程序
在HADOOP安装目录下,运行一个示例mr程序
cd $HADOOP_HOME/share/hadoop/mapreduce/
hadoop jar mapredcue-example-2.6.1.jar wordcount /wordcount/input  /wordcount/output 

5 集群使用初步
5.1 HDFS使用
    1、查看集群状态
        命令:   hdfs  dfsadmin  –report 
     
        可以看出,集群共有3个datanode可用
        也可打开web控制台查看HDFS集群信息,在浏览器打开http://hdp-node-01:50070/
     
    2、上传文件到HDFS
        查看HDFS中的目录信息
        命令:   hadoop  fs  –ls  /
     

        上传文件
        命令:   hadoop  fs  -put  ./ scala-2.10.6.tgz  to  /
     

        从HDFS下载文件
        命令:  hadoop  fs  -get  /yarn-site.xml
     

5.2 MAPREDUCE使用
    mapreduce是hadoop中的分布式运算编程框架,只要按照其编程规范,只需要编写少量的业务逻辑代码即可实现一个强大的海量数据并发处理程序
5.2.1 Demo开发——wordcount
    1、需求
        从大量(比如T级别)文本文件中,统计出每一个单词出现的总次数

    2、mapreduce实现思路
        Map阶段:
        a)    从HDFS的源数据文件中逐行读取数据
        b)    将每一行数据切分出单词
        c)    为每一个单词构造一个键值对(单词,1)
        d)    将键值对发送给reduce

    Reduce阶段:
        a)    接收map阶段输出的单词键值对
        b)    将相同单词的键值对汇聚成一组
        c)    对每一组,遍历组中的所有“值”,累加求和,即得到每一个单词的总次数
        d)    将(单词,总次数)输出到HDFS的文件中


4、    具体编码实现
    (1)定义一个mapper类
    //首先要定义四个泛型的类型
    //keyin:  LongWritable    valuein: Text
    //keyout: Text            valueout:IntWritable

    public class WordCountMapper extends Mapper{
        //map方法的生命周期:  框架每传一行数据就被调用一次
        //key :  这一行的起始点在文件中的偏移量
        //value: 这一行的内容
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            //拿到一行数据转换为string
            String line = value.toString();
            //将这一行切分出各个单词
            String[] words = line.split(" ");
            //遍历数组,输出<单词,1>
            for(String word:words){
                context.write(new Text(word), new IntWritable(1));
            }
        }
    }

(2)定义一个reducer类
    //生命周期:框架每传递进来一个kv 组,reduce方法被调用一次
    @Override
    protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
        //定义一个计数器
        int count = 0;
        //遍历这一组kv的所有v,累加到count中
        for(IntWritable value:values){
            count += value.get();
        }
        context.write(key, new IntWritable(count));
    }
}

(3)定义一个主类,用来描述job并提交job
public class WordCountRunner {
    //把业务逻辑相关的信息(哪个是mapper,哪个是reducer,要处理的数据在哪里,输出的结果放哪里。。。。。。)描述成一个job对象
    //把这个描述好的job提交给集群去运行
    public static void main(String[] args) throws Exception {
        Configuration cOnf= new Configuration();
        Job wcjob = Job.getInstance(conf);
        //指定我这个job所在的jar包
//        wcjob.setJar("/home/hadoop/wordcount.jar");
        wcjob.setJarByClass(WordCountRunner.class);
        
        wcjob.setMapperClass(WordCountMapper.class);
        wcjob.setReducerClass(WordCountReducer.class);
        //设置我们的业务逻辑Mapper类的输出key和value的数据类型
        wcjob.setMapOutputKeyClass(Text.class);
        wcjob.setMapOutputValueClass(IntWritable.class);
        //设置我们的业务逻辑Reducer类的输出key和value的数据类型
        wcjob.setOutputKeyClass(Text.class);
        wcjob.setOutputValueClass(IntWritable.class);
        
        //指定要处理的数据所在的位置
        FileInputFormat.setInputPaths(wcjob, "hdfs://hdp-server01:9000/wordcount/data/big.txt");
        //指定处理完成之后的结果所保存的位置
        FileOutputFormat.setOutputPath(wcjob, new Path("hdfs://hdp-server01:9000/wordcount/output/"));
        
        //向yarn集群提交这个job
        boolean res = wcjob.waitForCompletion(true);
        System.exit(res?0:1);
    }


5.2.2 程序打包运行
    1.    将程序打包
    2.    准备输入数据
    vi  /home/hadoop/test.txt
    Hello tom
    Hello jim
    Hello ketty
    Hello world
    Ketty tom
    在hdfs上创建输入数据文件夹:
    hadoop   fs  mkdir  -p  /wordcount/input
    将words.txt上传到hdfs上
    hadoop  fs  –put  /home/hadoop/words.txt  /wordcount/input

    3.    将程序jar包上传到集群的任意一台服务器上

    4.    使用命令启动执行wordcount程序jar包
    $ hadoop jar wordcount.jar cn.itcast.bigdata.mrsimple.WordCountDriver /wordcount/input /wordcount/out
     
    5.    查看执行结果
    $ hadoop fs –cat /wordcount/out/part-r-00000


推荐阅读
  • 大数据领域的职业路径与角色解析
    本文将深入探讨大数据领域的各种职业和工作角色,帮助读者全面了解大数据行业的需求、市场趋势,以及从入门到高级专业人士的职业发展路径。文章还将详细介绍不同公司对大数据人才的需求,并解析各岗位的具体职责、所需技能和经验。 ... [详细]
  • Java虚拟机及其发展历程
    Java虚拟机(JVM)是每个Java开发者日常工作中不可或缺的一部分,但其背后的运作机制却往往显得神秘莫测。本文将探讨Java及其虚拟机的发展历程,帮助读者深入了解这一关键技术。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • 本文探讨了一个Web工程项目的需求,即允许用户随时添加定时任务,并通过Quartz框架实现这些任务的自动化调度。文章将介绍如何设计任务表以存储任务信息和执行周期,以及如何通过一个定期扫描机制自动识别并加载新任务到调度系统中。 ... [详细]
  • 初探Hadoop:第一章概览
    本文深入探讨了《Hadoop》第一章的内容,重点介绍了Hadoop的基本概念及其如何解决大数据处理中的关键挑战。 ... [详细]
  • 本文由公众号【数智物语】(ID: decision_engine)发布,关注获取更多干货。文章探讨了从数据收集到清洗、建模及可视化的全过程,介绍了41款实用工具,旨在帮助数据科学家和分析师提升工作效率。 ... [详细]
  • 如何高效学习鸿蒙操作系统:开发者指南
    本文探讨了开发者如何更有效地学习鸿蒙操作系统,提供了来自行业专家的建议,包括系统化学习方法、职业规划建议以及具体的开发技巧。 ... [详细]
  • 本文探讨了使用Python实现监控信息收集的方法,涵盖从基础的日志记录到复杂的系统运维解决方案,旨在帮助开发者和运维人员提升工作效率。 ... [详细]
  • 实践指南:使用Express、Create React App与MongoDB搭建React开发环境
    本文详细介绍了如何利用Express、Create React App和MongoDB构建一个高效的React应用开发环境,旨在为开发者提供一套完整的解决方案,包括环境搭建、数据模拟及前后端交互。 ... [详细]
  • 2017-09-07前端日报精选JavaScriptEventLoop机制详解与Vue.js中实践应用Redux基础与实践如何用js获取虚拟键盘高度?( ... [详细]
  • 本文探讨了在不同场景下如何高效且安全地存储Token,包括使用定时器刷新、数据库存储等方法,并针对个人开发者与第三方服务平台的不同需求提供了具体建议。 ... [详细]
  • 本文详细介绍了PHP中的几种超全局变量,包括$GLOBAL、$_SERVER、$_POST、$_GET等,并探讨了AJAX的工作原理及其优缺点。通过具体示例,帮助读者更好地理解和应用这些技术。 ... [详细]
  • MVC模式下的电子取证技术初探
    本文探讨了在MVC(模型-视图-控制器)架构下进行电子取证的技术方法,通过实际案例分析,提供了详细的取证步骤和技术要点。 ... [详细]
  • 本文介绍了Tomcat的基本操作,包括启动、关闭及首次访问的方法,并详细讲解了如何在IDEA中创建Web项目,配置Servlet及其映射,以及如何将项目部署到Tomcat。 ... [详细]
  • WebBenchmark:强大的Web API性能测试工具
    本文介绍了一款名为WebBenchmark的Web API性能测试工具,该工具不仅支持HTTP和HTTPS服务的测试,还提供了丰富的功能来帮助开发者进行高效的性能评估。 ... [详细]
author-avatar
邹昕明
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有