热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

[转]Spark学习之路(三)Spark之RDD

Spark学习之路(三)Spark之RDD https:www.cnblogs.comqingyunzongp8899715.html目录一、RDD的概述1.1什么是RDD?1.2

Spark学习之路 (三)Spark之RDD
 

https://www.cnblogs.com/qingyunzong/p/8899715.html

目录



  • 一、RDD的概述

    • 1.1 什么是RDD?

    • 1.2 RDD的属性

    • 1.3 WordCount粗图解RDD



  • 二、RDD的创建方式

    • 2.1 通过读取文件生成的

    • 2.2 通过并行化的方式创建RDD

    • 2.3 其他方式



  • 三、RDD编程API

    • 3.1 Transformation

    • 3.2 Action

    • 3.3 Spark WordCount代码编写

    • 3.4 WordCount执行过程图



  • 四、RDD的宽依赖和窄依赖

    • 4.1 RDD依赖关系的本质内幕

    • 4.2 依赖关系下的数据流视图



 

正文


回到顶部

一、RDD的概述


1.1 什么是RDD?

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。


1.2 RDD的属性

(1)一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。

(2)一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。

(3)RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

(4)一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。

(5)一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。


1.3 WordCount粗图解RDD

其中hello.txt


回到顶部

二、RDD的创建方式


2.1 通过读取文件生成的

由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等

scala> val file = sc.textFile("/spark/hello.txt")


2.2 通过并行化的方式创建RDD

由一个已经存在的Scala集合创建。


scala> val array = Array(1,2,3,4,5)
array: Array[Int] = Array(1, 2, 3, 4, 5)
scala> val rdd = sc.parallelize(array)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[27] at parallelize at :26
scala>


2.3 其他方式

读取数据库等等其他的操作。也可以生成RDD。

RDD可以通过其他的RDD转换而来的。


回到顶部

三、RDD编程API

Spark支持两个类型(算子)操作:Transformation和Action


3.1 Transformation

主要做的是就是将一个已有的RDD生成另外一个RDD。Transformation具有lazy特性(延迟加载)。Transformation算子的代码不会真正被执行。只有当我们的程序里面遇到一个action算子的时候,代码才会真正的被执行。这种设计让Spark更加有效率地运行。

常用的Transformation




































































































































转换


含义


map(func)


返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成


filter(func)


返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成


flatMap(func)


类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)


mapPartitions(func)


类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U]


mapPartitionsWithIndex(func)


类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是

(Int, Interator[T]) => Iterator[U]


sample(withReplacement, fraction, seed)


根据fraction指定的比例对数据进行采样,可以选择是否使用随机数进行替换,seed用于指定随机数生成器种子


union(otherDataset)


对源RDD和参数RDD求并集后返回一个新的RDD


intersection(otherDataset)


对源RDD和参数RDD求交集后返回一个新的RDD


distinct([numTasks]))


对源RDD进行去重后返回一个新的RDD


groupByKey([numTasks])


在一个(K,V)的RDD上调用,返回一个(K, Iterator[V])的RDD


reduceByKey(func, [numTasks])


在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,与groupByKey类似,reduce任务的个数可以通过第二个可选的参数来设置


aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])


先按分区聚合 再总的聚合   每次要跟初始值交流 例如:aggregateByKey(0)(_+_,_+_) 对k/y的RDD进行操作


sortByKey([ascending], [numTasks])


在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD


sortBy(func,[ascending], [numTasks])


与sortByKey类似,但是更灵活 第一个参数是根据什么排序  第二个是怎么排序 false倒序   第三个排序后分区数  默认与原RDD一样


join(otherDataset, [numTasks])


在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD  相当于内连接(求交集)


cogroup(otherDataset, [numTasks])


在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable,Iterable))类型的RDD


cartesian(otherDataset)


两个RDD的笛卡尔积  的成很多个K/V


pipe(command, [envVars])


调用外部程序


coalesce(numPartitions)   


重新分区 第一个参数是要分多少区,第二个参数是否shuffle 默认false  少分区变多分区 true   多分区变少分区 false


repartition(numPartitions)


重新分区 必须shuffle  参数是要分多少区  少变多


repartitionAndSortWithinPartitions(partitioner)


重新分区+排序  比先分区再排序效率高  对K/V的RDD进行操作


foldByKey(zeroValue)(seqOp)


该函数用于K/V做折叠,合并处理 ,与aggregate类似   第一个括号的参数应用于每个V值  第二括号函数是聚合例如:_+_


combineByKey


合并相同的key的值 rdd1.combineByKey(x => x, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)


partitionBy(partitioner)


对RDD进行分区  partitioner是分区器 例如new HashPartition(2


cache


RDD缓存,可以避免重复计算从而减少时间,区别:cache内部调用了persist算子,cache默认就一个缓存级别MEMORY-ONLY ,而persist则可以选择缓存级别


persist


 


 


Subtract(rdd)


返回前rdd元素不在后rdd的rdd


leftOuterJoin


leftOuterJoin类似于SQL中的左外关联left outer join,返回结果以前面的RDD为主,关联不上的记录为空。只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可。


rightOuterJoin


rightOuterJoin类似于SQL中的有外关联right outer join,返回结果以参数中的RDD为主,关联不上的记录为空。只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可


subtractByKey


substractByKey和基本转换操作中的subtract类似只不过这里是针对K的,返回在主RDD中出现,并且不在otherRDD中出现的元素



3.2 Action

触发代码的运行,我们一段spark代码里面至少需要有一个action操作。

常用的Action:





















































































动作


含义


reduce(func)


通过func函数聚集RDD中的所有元素,这个功能必须是课交换且可并联的


collect()


在驱动程序中,以数组的形式返回数据集的所有元素


count()


返回RDD的元素个数


first()


返回RDD的第一个元素(类似于take(1))


take(n)


返回一个由数据集的前n个元素组成的数组


takeSample(withReplacement,num, [seed])


返回一个数组,该数组由从数据集中随机采样的num个元素组成,可以选择是否用随机数替换不足的部分,seed用于指定随机数生成器种子


takeOrdered(n[ordering])


 


saveAsTextFile(path)


将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本


saveAsSequenceFile(path


将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。


saveAsObjectFile(path


 


countByKey()


针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。


foreach(func)


在数据集的每一个元素上,运行函数func进行更新。


aggregate


先对分区进行操作,在总体操作


reduceByKeyLocally


 


lookup


 


top


 


fold


 


foreachPartition


 


 


 



3.3 Spark WordCount代码编写

使用maven进行项目构建


 (1)使用scala进行编写

查看官方网站,需要导入2个依赖包

详细代码

SparkWordCountWithScala.scala


import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object SparkWordCountWithScala {
def main(args: Array[String]): Unit = {
val cOnf= new SparkConf()
/**
* 如果这个参数不设置,默认认为你运行的是集群模式
* 如果设置成local代表运行的是local模式
*/
conf.setMaster("local")
//设置任务名
conf.setAppName("WordCount")
//创建SparkCore的程序入口
val sc = new SparkContext(conf)
//读取文件 生成RDD
val file: RDD[String] = sc.textFile("E:\\hello.txt")
//把每一行数据按照,分割
val word: RDD[String] = file.flatMap(_.split(","))
//让每一个单词都出现一次
val wordOne: RDD[(String, Int)] = word.map((_,1))
//单词计数
val wordCount: RDD[(String, Int)] = wordOne.reduceByKey(_+_)
//按照单词出现的次数 降序排序
val sortRdd: RDD[(String, Int)] = wordCount.sortBy(tuple => tuple._2,false)
//将最终的结果进行保存
sortRdd.saveAsTextFile("E:\\result")
sc.stop()
}

运行结果


(2)使用java jdk7进行编写

SparkWordCountWithJava7.java


import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
import java.util.Arrays;
import java.util.Iterator;
public class SparkWordCountWithJava7 {
public static void main(String[] args) {
SparkConf cOnf= new SparkConf();
conf.setMaster("local");
conf.setAppName("WordCount");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD fileRdd = sc.textFile("E:\\hello.txt");
JavaRDD wordRDD = fileRdd.flatMap(new FlatMapFunction() {
@Override
public Iterator call(String line) throws Exception {
return Arrays.asList(line.split(",")).iterator();
}
});
JavaPairRDD wordOneRDD= wordRDD.mapToPair(new PairFunction() {
@Override
public Tuple2 call(String word) throws Exception {
return new Tuple2<>(word, 1);
}
});
JavaPairRDD wordCountRDD = wordOneRDD.reduceByKey(new Function2() {
@Override
public Integer call(Integer i1, Integer i2) throws Exception {
return i1 + i2;
}
});
JavaPairRDD count2WordRDD = wordCountRDD.mapToPair(new PairFunction, Integer, String>() {
@Override
public Tuple2 call(Tuple2 tuple) throws Exception {
return new Tuple2<>(tuple._2, tuple._1);
}
});
JavaPairRDD sortRDD = count2WordRDD.sortByKey(false);
JavaPairRDD resultRDD = sortRDD.mapToPair(new PairFunction, String, Integer>() {
@Override
public Tuple2 call(Tuple2 tuple) throws Exception {
return new Tuple2<>(tuple._2, tuple._1);
}
});
resultRDD.saveAsTextFile("E:\\result7");
}
}

 (3)使用java jdk8进行编写

lambda表达式

SparkWordCountWithJava8.java


import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;
import java.util.Arrays;
public class SparkWordCountWithJava8 {
public static void main(String[] args) {
SparkConf cOnf= new SparkConf();
conf.setAppName("WortCount");
conf.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD fileRDD = sc.textFile("E:\\hello.txt");
JavaRDD wordRdd = fileRDD.flatMap(line -> Arrays.asList(line.split(",")).iterator());
JavaPairRDD wordOneRDD= wordRdd.mapToPair(word -> new Tuple2<>(word, 1));
JavaPairRDD wordCountRDD = wordOneRDD.reduceByKey((x, y) -> x + y);
JavaPairRDD count2WordRDD = wordCountRDD.mapToPair(tuple -> new Tuple2<>(tuple._2, tuple._1));
JavaPairRDD sortRDD = count2WordRDD.sortByKey(false);
JavaPairRDD resultRDD = sortRDD.mapToPair(tuple -> new Tuple2<>(tuple._2, tuple._1));
resultRDD.saveAsTextFile("E:\\result8");
}

3.4 WordCount执行过程图

 

 


回到顶部

四、RDD的宽依赖和窄依赖


4.1 RDD依赖关系的本质内幕

由于RDD是粗粒度的操作数据集,每个Transformation操作都会生成一个新的RDD,所以RDD之间就会形成类似流水线的前后依赖关系;RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。如图所示显示了RDD之间的依赖关系。

从图中可知:

窄依赖:是指每个父RDD的一个Partition最多被子RDD的一个Partition所使用,例如map、filter、union等操作都会产生窄依赖;(独生子女)

宽依赖:是指一个父RDD的Partition会被多个子RDD的Partition所使用,例如groupByKey、reduceByKey、sortByKey等操作都会产生宽依赖;(超生)

需要特别说明的是对join操作有两种情况:

(1)图中左半部分join:如果两个RDD在进行join操作时,一个RDD的partition仅仅和另一个RDD中已知个数的Partition进行join,那么这种类型的join操作就是窄依赖,例如图1中左半部分的join操作(join with inputs co-partitioned);

(2)图中右半部分join:其它情况的join操作就是宽依赖,例如图1中右半部分的join操作(join with inputs not co-partitioned),由于是需要父RDD的所有partition进行join的转换,这就涉及到了shuffle,因此这种类型的join操作也是宽依赖。

总结:


在这里我们是从父RDD的partition被使用的个数来定义窄依赖和宽依赖,因此可以用一句话概括下:如果父RDD的一个Partition被子RDD的一个Partition所使用就是窄依赖,否则的话就是宽依赖。因为是确定的partition数量的依赖关系,所以RDD之间的依赖关系就是窄依赖;由此我们可以得出一个推论:即窄依赖不仅包含一对一的窄依赖,还包含一对固定个数的窄依赖。

一对固定个数的窄依赖的理解:即子RDD的partition对父RDD依赖的Partition的数量不会随着RDD数据规模的改变而改变;换句话说,无论是有100T的数据量还是1P的数据量,在窄依赖中,子RDD所依赖的父RDD的partition的个数是确定的,而宽依赖是shuffle级别的,数据量越大,那么子RDD所依赖的父RDD的个数就越多,从而子RDD所依赖的父RDD的partition的个数也会变得越来越多。



4.2 依赖关系下的数据流视图

在spark中,会根据RDD之间的依赖关系将DAG图(有向无环图)划分为不同的阶段,对于窄依赖,由于partition依赖关系的确定性,partition的转换处理就可以在同一个线程里完成,窄依赖就被spark划分到同一个stage中,而对于宽依赖,只能等父RDD shuffle处理完成后,下一个stage才能开始接下来的计算。

因此spark划分stage的整体思路是:从后往前推,遇到宽依赖就断开,划分为一个stage;遇到窄依赖就将这个RDD加入该stage中。因此在图2中RDD C,RDD D,RDD E,RDDF被构建在一个stage中,RDD A被构建在一个单独的Stage中,而RDD B和RDD G又被构建在同一个stage中。

在spark中,Task的类型分为2种:ShuffleMapTaskResultTask

简单来说,DAG的最后一个阶段会为每个结果的partition生成一个ResultTask,即每个Stage里面的Task的数量是由该Stage中最后一个RDD的Partition的数量所决定的!而其余所有阶段都会生成ShuffleMapTask;之所以称之为ShuffleMapTask是因为它需要将自己的计算结果通过shuffle到下一个stage中;也就是说上图中的stage1和stage2相当于mapreduce中的Mapper,而ResultTask所代表的stage3就相当于mapreduce中的reducer。

在之前动手操作了一个wordcount程序,因此可知,Hadoop中MapReduce操作中的Mapper和Reducer在spark中的基本等量算子是map和reduceByKey;不过区别在于:Hadoop中的MapReduce天生就是排序的;而reduceByKey只是根据Key进行reduce,但spark除了这两个算子还有其他的算子;因此从这个意义上来说,Spark比Hadoop的计算算子更为丰富。

 



推荐阅读
  • NoSQL数据库,即非关系型数据库,有时也被称作Not Only SQL,是一种区别于传统关系型数据库的管理系统。这类数据库设计用于处理大规模、高并发的数据存储与查询需求,特别适用于需要快速读写大量非结构化或半结构化数据的应用场景。NoSQL数据库通过牺牲部分一致性来换取更高的可扩展性和性能,支持分布式部署,能够有效应对互联网时代的海量数据挑战。 ... [详细]
  • Hadoop的文件操作位于包org.apache.hadoop.fs里面,能够进行新建、删除、修改等操作。比较重要的几个类:(1)Configurati ... [详细]
  • Spark与HBase结合处理大规模流量数据结构设计
    本文将详细介绍如何利用Spark和HBase进行大规模流量数据的分析与处理,包括数据结构的设计和优化方法。 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 在过去,我曾使用过自建MySQL服务器中的MyISAM和InnoDB存储引擎(也曾尝试过Memory引擎)。今年初,我开始转向阿里云的关系型数据库服务,并深入研究了其高效的压缩存储引擎TokuDB。TokuDB在数据压缩和处理大规模数据集方面表现出色,显著提升了存储效率和查询性能。通过实际应用,我发现TokuDB不仅能够有效减少存储成本,还能显著提高数据处理速度,特别适用于高并发和大数据量的场景。 ... [详细]
  • 在搭建Hadoop集群以处理大规模数据存储和频繁读取需求的过程中,经常会遇到各种配置难题。本文总结了作者在实际部署中遇到的典型问题,并提供了详细的解决方案,帮助读者避免常见的配置陷阱。通过这些经验分享,希望读者能够更加顺利地完成Hadoop集群的搭建和配置。 ... [详细]
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • 技术日志:深入探讨Spark Streaming与Spark SQL的融合应用
    技术日志:深入探讨Spark Streaming与Spark SQL的融合应用 ... [详细]
  • 本文详细介绍了HDFS的基础知识及其数据读写机制。首先,文章阐述了HDFS的架构,包括其核心组件及其角色和功能。特别地,对NameNode进行了深入解析,指出其主要负责在内存中存储元数据、目录结构以及文件块的映射关系,并通过持久化方案确保数据的可靠性和高可用性。此外,还探讨了DataNode的角色及其在数据存储和读取过程中的关键作用。 ... [详细]
  • 深入理解Spark框架:RDD核心概念与操作详解
    RDD是Spark框架的核心计算模型,全称为弹性分布式数据集(Resilient Distributed Dataset)。本文详细解析了RDD的基本概念、特性及其在Spark中的关键操作,包括创建、转换和行动操作等,帮助读者深入理解Spark的工作原理和优化策略。通过具体示例和代码片段,进一步阐述了如何高效利用RDD进行大数据处理。 ... [详细]
  • 本文将介绍如何在混合开发(Hybrid)应用中实现Native与HTML5的交互,包括基本概念、学习目标以及具体的实现步骤。 ... [详细]
  • Framework7:构建跨平台移动应用的高效框架
    Framework7 是一个开源免费的框架,适用于开发混合移动应用(原生与HTML混合)或iOS&Android风格的Web应用。此外,它还可以作为原型开发工具,帮助开发者快速创建应用原型。 ... [详细]
  • Hadoop平台警告解决:无法加载本机Hadoop库的全面应对方案
    本文探讨了在Hadoop平台上遇到“无法加载本机Hadoop库”警告的多种解决方案。首先,通过修改日志配置文件来忽略该警告,这一方法被证明是有效的。其次,尝试指定本地库的路径,但未能解决问题。接着,尝试不使用Hadoop本地库,同样没有效果。然后,通过替换现有的Hadoop本地库,成功解决了问题。最后,根据Hadoop的源代码自行编译本地库,也达到了预期的效果。以上方法适用于macOS系统。 ... [详细]
  • 本文深入解析了Java 8并发编程中的`AtomicInteger`类,详细探讨了其源码实现和应用场景。`AtomicInteger`通过硬件级别的原子操作,确保了整型变量在多线程环境下的安全性和高效性,避免了传统加锁方式带来的性能开销。文章不仅剖析了`AtomicInteger`的内部机制,还结合实际案例展示了其在并发编程中的优势和使用技巧。 ... [详细]
author-avatar
高粱_
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有