热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

(转载)IplImage、CvMat等图像处理库的使用方法详解

opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,M

opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,opencv对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。在opencv2.0之前,opencv是完全用C实现的,但是,IplImage类型与CvMat类型的关系类似于面向对象中的继承关系。实际上,CvMat之上还有一个更抽象的基类----CvArr,这在源代码中会常见。

1. IplImage

opencv中的图像信息头,该结构体定义:  

typedef struct _IplImage { int nSize; int ID; int nChannels; int alphaChannel; int depth; char colorModel[4]; char channelSeq[4]; int dataOrder; int origin; int align; int width; int height; struct _IplROI *roi; struct _IplImage *maskROI; void *imageId; struct _IplTileInfo *tileInfo; int imageSize; char *imageData; int widthStep; int BorderMode[4]; int BorderConst[4]; char *imageDataOrigin; } IplImage;

dataOrder中的两个取值:交叉存取颜色通道是颜色数据排列将会是BGRBGR...的交错排列。分开的颜色通道是有几个颜色通道就分几个颜色平面存储。roi是IplROI结构体,该结构体包含了xOffset,yOffset,height,width,coi成员变量,其中xOffset,yOffset是x,y坐标,coi代表channelof interest(感兴趣的通道),非0的时候才有效。访问图像中的数据元素,分间接存储和直接存储,当图像元素为浮点型时,(uchar*) 改为 (float *): 

IplImage* img=cvLoadImage("lena.jpg", 1);CvScalar s; s=cvGet2D(img,i,j); cvSet2D(img,i,j,s); IplImage* img; //malloc memory by cvLoadImage or cvCreateImage
for(int row &#61; 0; row < img->height; row&#43;&#43;){for (int col &#61; 0; col width; col&#43;&#43;){b &#61; CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels &#43; 0); g &#61; CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels &#43; 1); r &#61; CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels &#43; 2);}}IplImage* img; //malloc memory by cvLoadImage or cvCreateImage
uchar b, g, r; // 3 channels
for(int row &#61; 0; row < img->height; row&#43;&#43;){for (int col &#61; 0; col width; col&#43;&#43;){b &#61; ((uchar *)(img->imageData &#43; row * img->widthStep))[col * img->nChannels &#43; 0]; g &#61; ((uchar *)(img->imageData &#43; row * img->widthStep))[col * img->nChannels &#43; 1]; r &#61; ((uchar *)(img->imageData &#43; row * img->widthStep))[col * img->nChannels &#43; 2];}}

 初始化使用IplImage *&#xff0c;是一个指向结构体IplImage的指针&#xff1a; 

IplImage * cvLoadImage(const char * filename, int iscolor CV_DEFAULT(CV_LOAD_IMAGE_COLOR)); //load images from specified image
IplImage * cvCreateImage(CvSize size, int depth, int channels); //allocate memory

 

2.CvMat

首先&#xff0c;我们需要知道&#xff0c;第一&#xff0c;在OpenCV中没有向量(vector)结构。任何时候需要向量&#xff0c;都只需要一个列矩阵(如果需要一个转置或者共轭向量&#xff0c;则需要一个行矩阵)。第二&#xff0c;OpenCV矩阵的概念与我们在线性代数课上学习的概念相比&#xff0c;更抽象&#xff0c;尤其是矩阵的元素&#xff0c;并非只能取简单的数值类型&#xff0c;可以是多通道的值。CvMat的结构&#xff1a; 

typedef struct CvMat { int type; int step; int* refcount; union {uchar* ptr;short* s;int* i;float* fl;double* db;} data; union {int rows;int height;};union {int cols; int width;};} CvMat;

 创建CvMat数据&#xff1a; 

CvMat * cvCreateMat(int rows, int cols, int type); CV_INLine CvMat cvMat((int rows, int cols, int type, void* data CV_DEFAULT); CvMat * cvInitMatHeader(CvMat * mat, int rows, int cols, int type, void * data CV_DEFAULT(NULL), int step CV_DEFAULT(CV_AUTOSTEP));

 对矩阵数据进行访问&#xff1a; 

cvmSet( CvMat* mat, int row, int col, double value);cvmGet( const CvMat* mat, int row, int col );CvScalar cvGet2D(const CvArr * arr, int idx0, int idx1); //CvArr只作为函数的形参void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar value);

CvMat * cvmat &#61; cvCreateMat(4, 4, CV_32FC1);cvmat->data.fl[row * cvmat->cols &#43; col] &#61; (float)3.0;CvMat * cvmat &#61; cvCreateMat(4, 4, CV_64FC1);cvmat->data.db[row * cvmat->cols &#43; col] &#61; 3.0;

CvMat * cvmat &#61; cvCreateMat(4, 4, CV_64FC1);CV_MAT_ELEM(*cvmat, double, row, col) &#61; 3.0;

if (CV_MAT_DEPTH(cvmat->type) &#61;&#61; CV_32F)CV_MAT_ELEM_CN(*cvmat, float, row, col * CV_MAT_CN(cvmat->type) &#43; ch) &#61; (float)3.0; // ch为通道值
if (CV_MAT_DEPTH(cvmat->type) &#61;&#61; CV_64F)CV_MAT_ELEM_CN(*cvmat, double, row, col * CV_MAT_CN(cvmat->type) &#43; ch) &#61; 3.0; // ch为通道值

for (int row &#61; 0; row rows; row&#43;&#43;){ p &#61; cvmat ->data.fl &#43; row * (cvmat->step / 4);for (int col &#61; 0; col cols; col&#43;&#43;) { *p &#61; (float) row &#43; col; *(p&#43;1) &#61; (float)row &#43; col &#43; 1; *(p&#43;2) &#61; (float)row &#43; col &#43; 2; p &#43;&#61; 3; }}CvMat * vector &#61; cvCreateMat(1,3, CV_32SC2);CV_MAT_ELEM(*vector, CvPoint, 0, 0) &#61; cvPoint(100,100);CvMat * vector &#61; cvCreateMat(1,3, CV_64FC4);CV_MAT_ELEM(*vector, CvScalar, 0, 0) &#61; CvScalar(0, 0, 0, 0);

 复制矩阵操作&#xff1a;

CvMat* M1 &#61; cvCreateMat(4,4,CV_32FC1);CvMat* M2;M2&#61;cvCloneMat(M1);

 

3.Mat

Mat是opencv2.0推出的处理图像的新的数据结构&#xff0c;现在越来越有趋势取代之前的cvMat和lplImage&#xff0c;相比之下Mat最大的好处就是能够更加方便的进行内存管理&#xff0c;不再需要程序员手动管理内存的释放。opencv2.3中提到Mat是一个多维的密集数据数组&#xff0c;可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。 

class CV_EXPORTS Mat{public&#xff1a;int flags;&#xff08;Note &#xff1a;目前还不知道flags做什么用的&#xff09;int dims; int rows,cols; uchar *data; int * refcount; ...};

 从以上结构体可以看出Mat也是一个矩阵头&#xff0c;默认不分配内存&#xff0c;只是指向一块内存(注意读写保护)。初始化使用create函数或者Mat构造函数&#xff0c;以下整理自opencv2.3.1Manual:

Mat(nrows, ncols, type, fillValue]); M.create(nrows, ncols, type);

例子&#xff1a;Mat M(7,7,CV_32FC2,Scalar(1,3)); M.create(100, 60, CV_8UC(15));

int sz[] &#61; {100, 100, 100}; Mat bigCube(3, sz, CV_8U, Scalar:all(0));

double m[3][3] &#61; {{a, b, c}, {d, e, f}, {g, h, i}};Mat M &#61; Mat(3, 3, CV_64F, m).inv();

Mat img(Size(320,240),CV_8UC3); Mat img(height, width, CV_8UC3, pixels, step);

IplImage* img &#61; cvLoadImage("greatwave.jpg", 1);Mat mtx(img,0); // convert IplImage* -> Mat;

访问Mat的数据元素&#xff1a;

Mat M;M.row(3) &#61; M.row(3) &#43; M.row(5) * 3; Mat M1 &#61; M.col(1);M.col(7).copyTo(M1); Mat M;M.at<double>(i,j); M.at(uchar)(i,j); Vec3i bgr1 &#61; M.at(Vec3b)(i,j) Vec3s bgr2 &#61; M.at(Vec3s)(i,j) Vec3w bgr3 &#61; M.at(Vec3w)(i,j) double sum &#61; 0.0f;for(int row &#61; 0; row const double * Mi &#61; M.ptr<double>(row); for (int col &#61; 0; col 0.);}double sum&#61;0;MatConstIterator<double> it &#61; M.begin<double>(), it_end &#61; M.end<double>();for(; it !&#61; it_end; &#43;&#43;it) sum &#43;&#61; std::max(*it, 0.);

Mat可进行Matlab风格的矩阵操作&#xff0c;如初始化的时候可以用initializers,zeros(), ones(), eye().除以上内容之外&#xff0c;Mat还有有3个重要的方法&#xff1a;

Mat mat &#61; imread(const String* filename); // 读取图像
imshow(const string frameName, InputArray mat); // 显示图像
imwrite (const string& filename, InputArray img); //储存图像

 

4. CvMat, Mat, IplImage之间的互相转换

IpIImage -> CvMatCvMat matheader;CvMat * mat &#61; cvGetMat(img, &matheader);CvMat * mat &#61; cvCreateMat(img->height, img->width, CV_64FC3);cvConvert(img, mat)

IplImage -> MatMat::Mat(const IplImage* img, bool copyData&#61;false);例子&#xff1a;IplImage* iplImg &#61; cvLoadImage("greatwave.jpg", 1);Mat mtx(iplImg);


Mat -> IplImageMat MIplImage iplimage &#61; M;

CvMat -> MatMat::Mat(const CvMat* m, bool copyData&#61;false);

Mat -> CvMat例子(假设Mat类型的imgMat图像数据存在)&#xff1a;CvMat cvMat &#61; imgMat;/*Mat -> CvMat, 类似转换到IplImage&#xff0c;不复制数据只创建矩阵头



推荐阅读
  • 本文详细介绍了Java反射机制的基本概念、获取Class对象的方法、反射的主要功能及其在实际开发中的应用。通过具体示例,帮助读者更好地理解和使用Java反射。 ... [详细]
  • 本文详细介绍了 PHP 中对象的生命周期、内存管理和魔术方法的使用,包括对象的自动销毁、析构函数的作用以及各种魔术方法的具体应用场景。 ... [详细]
  • 本文介绍了如何利用 `matplotlib` 库中的 `FuncAnimation` 类将 Python 中的动态图像保存为视频文件。通过详细解释 `FuncAnimation` 类的参数和方法,文章提供了多种实用技巧,帮助用户高效地生成高质量的动态图像视频。此外,还探讨了不同视频编码器的选择及其对输出文件质量的影响,为读者提供了全面的技术指导。 ... [详细]
  • 本文介绍了如何使用Flume从Linux文件系统收集日志并存储到HDFS,然后通过MapReduce清洗数据,使用Hive进行数据分析,并最终通过Sqoop将结果导出到MySQL数据库。 ... [详细]
  • 更新vuex的数据为什么用mutation?
    更新vuex的数据为什么用mutation?,Go语言社区,Golang程序员人脉社 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • DAO(Data Access Object)模式是一种用于抽象和封装所有对数据库或其他持久化机制访问的方法,它通过提供一个统一的接口来隐藏底层数据访问的复杂性。 ... [详细]
  • 本文详细介绍了在 CentOS 7 系统中配置 fstab 文件以实现开机自动挂载 NFS 共享目录的方法,并解决了常见的配置失败问题。 ... [详细]
  • Ihavetwomethodsofgeneratingmdistinctrandomnumbersintherange[0..n-1]我有两种方法在范围[0.n-1]中生 ... [详细]
  • 在多线程并发环境中,普通变量的操作往往是线程不安全的。本文通过一个简单的例子,展示了如何使用 AtomicInteger 类及其核心的 CAS 无锁算法来保证线程安全。 ... [详细]
  • 本文介绍如何使用 Python 的 DOM 和 SAX 方法解析 XML 文件,并通过示例展示了如何动态创建数据库表和处理大量数据的实时插入。 ... [详细]
  • 第二十五天接口、多态
    1.java是面向对象的语言。设计模式:接口接口类是从java里衍生出来的,不是python原生支持的主要用于继承里多继承抽象类是python原生支持的主要用于继承里的单继承但是接 ... [详细]
  • 在《Cocos2d-x学习笔记:基础概念解析与内存管理机制深入探讨》中,详细介绍了Cocos2d-x的基础概念,并深入分析了其内存管理机制。特别是针对Boost库引入的智能指针管理方法进行了详细的讲解,例如在处理鱼的运动过程中,可以通过编写自定义函数来动态计算角度变化,利用CallFunc回调机制实现高效的游戏逻辑控制。此外,文章还探讨了如何通过智能指针优化资源管理和避免内存泄漏,为开发者提供了实用的编程技巧和最佳实践。 ... [详细]
  • 如何将TS文件转换为M3U8直播流:HLS与M3U8格式详解
    在视频传输领域,MP4虽然常见,但在直播场景中直接使用MP4格式存在诸多问题。例如,MP4文件的头部信息(如ftyp、moov)较大,导致初始加载时间较长,影响用户体验。相比之下,HLS(HTTP Live Streaming)协议及其M3U8格式更具优势。HLS通过将视频切分成多个小片段,并生成一个M3U8播放列表文件,实现低延迟和高稳定性。本文详细介绍了如何将TS文件转换为M3U8直播流,包括技术原理和具体操作步骤,帮助读者更好地理解和应用这一技术。 ... [详细]
  • OpenAI首席执行官Sam Altman展望:人工智能的未来发展方向与挑战
    OpenAI首席执行官Sam Altman展望:人工智能的未来发展方向与挑战 ... [详细]
author-avatar
qt70ewi
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有