热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

[原创]Day3.箱线图和热力图的绘制

使用Matplotlib和Seaborn进行绘制箱线图和热力图。箱线图箱线图(boxplot)又称盒式图,可以显示数据的分散情况,由五个数值点组成&#x

使用Matplotlib和Seaborn进行绘制箱线图和热力图

箱线图

箱线图(boxplot)又称盒式图,可以显示数据的分散情况,由五个数值点组成:最大值(max)-上界、最小值(min)-下界、中位数(median)和上下四分位数(Q1, Q3)。它可以帮我们分析出数据的差异性、离散程度和异常值等。

 # 数据准备# ⽣成0-1之间的10*4维度数据(10行,4列的数组)import numpy as npdata = np.random.normal(size=(10,4))lables = ['A', 'B', 'C', 'D']# ⽤Matplotlib画箱线图# boxplot(x,labels=None)函数,x代表绘图数据,labels是缺省值,可以为箱线图添加标签。import matplotlib.pyplot as pltplt.boxplot(data, labels=lables) #注意单词labels和lablesplt.show()# ⽤Seaborn画箱线图# boxplot(x=None,y=None,data=None)函数。data为DataFrame类型,x、y是data中的变量。import seaborn as snsimport pandas as pddf = pd.DataFrame(data, columns=lables)sns.boxplot(data=df)plt.show()

运行结果:

热力图

热力图(heat map)是一种矩阵表示方法,其中矩阵中的元素值用颜色来代表,不同的颜色代表不同大小的值。通过颜色的深浅就能直观地知道某个位置上数值的大小。另外也可以某个位置上的颜色与其他位置颜色进行比较,是一种非常直观的多元变量分析方法。

1、基本热力图

2、设置热力图区间

3、颜色差异更大的原因

4、使用Seaborn自带数据

一般使用Sarborn中的sns.heatmap(data)函数绘制,我们使用Seaborn中自带的数据集flights,该数据集记录了1949年到1960年期间,每个月的航班乘客的数量。一般可能会出网络问题导致的失败。

https://github.com/mwaskom/seaborn-data

运行结果:

5、指定调色板

小作业

1、Seaborn数据集中自带了car_crashes数据集,这是一个国外车祸的数据集,对这个数据集进行成对关系的探索。并用Seaborn画二元变量(x="total,y="speeding")分布图,如果想要画散点图,核密度图,Hexbin图该怎样写.

请添加小编,回复关键词:[数据可视化],

-今日互动-

你学会了吗?欢迎文章下方留言互动

如果对你有帮助的话

❤️来个「转发朋友圈」和「在看」,是最大的支持❤️


推荐阅读
  • 探索聚类分析中的K-Means与DBSCAN算法及其应用
    聚类分析是一种用于解决样本或特征分类问题的统计分析方法,也是数据挖掘领域的重要算法之一。本文主要探讨了K-Means和DBSCAN两种聚类算法的原理及其应用场景。K-Means算法通过迭代优化簇中心来实现数据点的划分,适用于球形分布的数据集;而DBSCAN算法则基于密度进行聚类,能够有效识别任意形状的簇,并且对噪声数据具有较好的鲁棒性。通过对这两种算法的对比分析,本文旨在为实际应用中选择合适的聚类方法提供参考。 ... [详细]
  • 通过使用 `pandas` 库中的 `scatter_matrix` 函数,可以有效地绘制出多个特征之间的两两关系。该函数不仅能够生成散点图矩阵,还能通过参数如 `frame`、`alpha`、`c`、`figsize` 和 `ax` 等进行自定义设置,以满足不同的可视化需求。此外,`diagonal` 参数允许用户选择对角线上的图表类型,例如直方图或密度图,从而提供更多的数据洞察。 ... [详细]
  • 机器学习中的标准化缩放、最小-最大缩放及鲁棒缩放技术解析 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • imnewtotheswiftandxcodeworld,soimhavingaproblemtryingtointegrateapackagetomypro ... [详细]
  • 百度地图离线开发demo(热力图)
    热力图主要用了bmplib插件,initMap(){this.mapnewBMap.Map(myMap);constpointnewBMap.Point(118.13 ... [详细]
  • 命令模式是一种行为设计模式,它将请求封装成一个独立的对象,从而允许你参数化不同的请求、队列请求或者记录请求日志。本文将详细介绍命令模式的基本概念、组件及其在实际场景中的应用。 ... [详细]
  • PTArchiver工作原理详解与应用分析
    PTArchiver工作原理及其应用分析本文详细解析了PTArchiver的工作机制,探讨了其在数据归档和管理中的应用。PTArchiver通过高效的压缩算法和灵活的存储策略,实现了对大规模数据的高效管理和长期保存。文章还介绍了其在企业级数据备份、历史数据迁移等场景中的实际应用案例,为用户提供了实用的操作建议和技术支持。 ... [详细]
  • 本文汇集了我在网络上搜集以及在实际面试中遇到的前端开发面试题目,并附有详细解答。无论是初学者还是有一定经验的开发者,都应深入理解这些问题背后的原理,通过系统学习和透彻研究,逐步形成自己的知识体系和技术框架。 ... [详细]
  • ButterKnife 是一款用于 Android 开发的注解库,主要用于简化视图和事件绑定。本文详细介绍了 ButterKnife 的基础用法,包括如何通过注解实现字段和方法的绑定,以及在实际项目中的应用示例。此外,文章还提到了截至 2016 年 4 月 29 日,ButterKnife 的最新版本为 8.0.1,为开发者提供了最新的功能和性能优化。 ... [详细]
  • 深入理解 Java 控制结构的全面指南 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 程序像这样工作得很好,但是,我不明白为什么它需要在gameOverwhile语句中使用无用的foreventinpygame.event.get():N ... [详细]
  • python机器学习之数据探索
    🐱今天我们来讲解数据建模之前需要处理的工作,也就是数据探索的过程,很多同学会说,不就是处理缺失值,异常值&# ... [详细]
  • Grafana 9 正式发布
    grafa ... [详细]
author-avatar
手机用户2602937913
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有