热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

[NeuralNetwork]——基础介绍

一、人工神经网络人工神经网络(ArtificialNeuralNetwork,ANN),简称神经网络(Neur
一、人工神经网络

 人工神经网络(Artificial Neural Network,ANN),简称神经网络(Neural Network)或类神经网络,是一种模仿生物网络(动物的中枢神经系统,特别是大脑),的结构和功能的数学模型,用于对函数进行估计和近似。

和其他机器学习方法一样,神经网络已经被用于解决各种各样的问题,例如:机器视觉和语音识别,这些问题都是很难被传基于规则的编程所解决的。


1、神经元


在生物神经网络中,每个神经元与其他神经元相连,当他兴奋时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的点位超过了一个“阈值”,那么他就会被激活,即“兴奋”起来,向其他神经元发送化学物质。

  • 神经元是神经网络中的基础单元,相互连接组成神经网络

2、单层神经网络


是最基本的神经元网络形式,由有限个神经元构成,所有神经元的输入向量都是同一个向量。由于每个神经元都会产生一个标量结果,所以单层神经元的输出是一个向量,向量的维数等于神经元的数目。

3、感知机

最常见的神经网络是两层的神经网络。是一个简单的二分类模型(给定阈值,判断数据属于哪一部分)。

感知机是由两层神经网络组成,输入层接收外界输入信号后传递给输出层(输出+1正例,-1反例),输出层是M-P神经元。

4、多层神经网络

(1)全连接层


全连接层:当前一层和前一层每个神经元相互连接,我们称之为当前这一层的全连接层

下图中:N-1和N层之间有 m*n 个参数w。也即全连接层就是在前一层的基础上进行一次 Y = Wx + b的变化(不考虑激活函数的情况下就是一次线性变化)

5、激活函数

激活函数很重要的一个作用就是:增加模型的非线性分割能力。

(1)线性关系:无法满足复杂的需求(曲线)


线性关系中,系统:函数f,模型f(x) = y,需要满足如下关系:

  • f(x1 + x2) = y1 + y2
  • f(kx1) = ky1


(2)常见的激活函数

(3)激活函数的作用


  1. 增加模型的非线性分割能力
  2. 提高模型的鲁棒性(稳健性),为了更好地拟合数据
  3. 缓解梯度消失问题
  4. 加速模型收敛问题,也即让模型训练快一些 


二、神经网络思想


推荐阅读
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 本文将介绍由密歇根大学Charles Severance教授主讲的顶级Python入门系列课程,该课程广受好评,被誉为Python学习的最佳选择。通过生动有趣的教学方式,帮助初学者轻松掌握编程基础。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • Google最新推出的嵌入AI技术的便携式相机Clips现已上架,旨在通过人工智能技术自动捕捉用户生活中值得纪念的时刻,帮助人们减少照片数量过多的问题。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 探索如何使用公共数据集为您的编程项目提供动力。无论您是编程新手还是有经验的开发者,本文将为您提供实用建议和资源,帮助您启动并运行一个创新的数据驱动型项目。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
author-avatar
香香画室_769
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有