热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

.NET性能优化使用内存+磁盘混合缓存

.NET性能优化-使用内存+磁盘混合缓存 我们回顾一下上一篇文章中的内容,有一个朋友问我这样一个问题:我的业务依赖一些数据,因为数据库访问慢,我把它放在Redis里面,不过还是太慢

.NET性能优化-使用内存+磁盘混合缓存

 

我们回顾一下上一篇文章中的内容,有一个朋友问我这样一个问题:


我的业务依赖一些数据,因为数据库访问慢,我把它放在Redis里面,不过还是太慢了,有什么其它的方案吗?


其实这个问题比较简单的是吧?Redis其实属于网络存储,我对照下面的这个表格,可以很容易的得出结论,既然网络存储的速度慢,那我们就可以使用内存RAM存储,把放Redis里面的数据给放内存里面就好了。























































操作速度
执行指令1/1,000,000,000 秒 = 1 纳秒
从一级缓存读取数据0.5 纳秒
分支预测失败5 纳秒
从二级缓存读取数据7 纳秒
使用Mutex加锁和解锁25 纳秒
从主存(RAM内存)中读取数据100 纳秒
在1Gbps速率的网络上发送2Kbyte的数据20,000 纳秒
从内存中读取1MB的数据250,000 纳秒
磁头移动到新的位置(代指机械硬盘)8,000,000 纳秒
从磁盘中读取1MB的数据20,000,000 纳秒
发送一个数据包从美国到欧洲然后回来150 毫秒 = 150,000,000 纳秒

提出这个方案以后,接下来就遇到了另外一个问题:


但是数据比我应用的内存大,这怎么办呢?


在上篇文章中,我们提到了使用FASTER作为内存+磁盘混合缓存的方案,但是由于FASTER的API比较难使用,另外在纯内存场景中表现不如ConcurrentDictionary,所以最后得出的结论也是仅供参考。

经过一段时间的研究,笔者实现了一个基于微软FasterKv封装的进程内混合缓存库(内存+磁盘),它有着更加易用的API,接下来就和大家讨论讨论它。


FasterKvCache架构

这里需要简单的说一说FasterKvCache的架构,它核心使用的FasterKv,所以架构实际上和FasterKv一致,其原理比较复杂,所以笔者简化了原理图,大概就如下所示:

FasterKv的热数据会在内存中,而全量的数据会持久化在磁盘中。这中间有一些缓存淘汰算法,所以大家看到这张图就能明白FasterKvCache适用和不适用哪些场景了。


如何使用它

笔者之前给EasyCaching提交了FasterKv的实现,但是由于有一些EasyCaching的高级功能在FasterKv上目前无法高性能的实现,所以单独创建了这个库,提供高性能和最基本的API实现;如果大家已经使用了EasyCaching,那么可以直接使用EasyCaching.FasterKv这个NuGet包。

如果使用需要FasterKvCache的话,只需要安装Nuget包,Nuget包不同的功能如下所示,其中序列化包可以只安装自己需要的即可。



























软件包名版本备注
FasterKv.Cache.Core1.0.0-rc1缓存核心包,包含FasterKvCache主要的API
FasterKv.Cache.MessagePack1.0.0-rc1基于MessagePack的磁盘序列化包,它具有着非常好的性能,但是需要注意它稍微有一点使用门槛,大家可以看它的文档。
FasterKv.Cache.SystemTextJson1.0.0-rc1基于System.Text.Json的磁盘序列化包,它是.NET平台上性能最好JSON序列化封装,但是比MessagePack差。不过它易用性非常好,无需对缓存实体进行单独配置。

使用


直接使用

我们可以直接通过new FasterKvCache(...)的方式使用它,目前它只支持基本的三种操作GetSetDelete。为了方便使用和性能的考虑,我们将FasterKvCache分为两种API风格,一种是通用对象风格,一种是泛型风格。



  • 通用对象:直接使用new FasterKvCache(...)创建,可以存放任意类型的Value。它底层使用object类型存储,所以内存缓冲内访问值类型对象会有装箱和拆箱的开销。

  • 泛型:需要使用new FasterKvCache(...)创建,只能存放T类型的Value。它底层使用T类型存储,所以内存缓冲内不会有任何开销。

当然如果内存缓冲不够,对应的Value被淘汰到磁盘上,那么同样都会有读写磁盘、序列化和反序列化开销。


通用对象版本

代码如下所示,同一个cache实例可以添加任意类型:

using FasterKv.Cache.Core;
using FasterKv.Cache.Core.Configurations;
using FasterKv.Cache.MessagePack;
// create a FasterKvCache
var cache = new FasterKv.Cache.Core.FasterKvCache("MyCache",
new DefaultSystemClock(),
new FasterKvCacheOptions(),
new IFasterKvCacheSerializer[]
{
new MessagePackFasterKvCacheSerializer
{
Name = "MyCache"
}
},
null);
var key = Guid.NewGuid().ToString("N");
// sync
// set key and value with expiry time
cache.Set(key, "my cache sync", TimeSpan.FromMinutes(5));
// get
var result = cache.Get<string>(key);
Console.WriteLine(result);
// delete
cache.Delete(key);
// async
// set
await cache.SetAsync(key, "my cache async");
// get
result = await cache.GetAsync<string>(key);
Console.WriteLine(result);
// delete
await cache.DeleteAsync(key);
// set other type object
cache.Set(key, new DateTime(2022,2,22));
Console.WriteLine(cache.Get(key));

输出结果如下所示:

my cache sync
my cache async
2022/2/22 0:00:00

泛型版本

泛型版本的话性能最好,但是它只允许添加一个类型,否则代码将编译不通过:

// create a FasterKvCache
// only set T type value
var cache = new FasterKvCache<string>("MyTCache",
new DefaultSystemClock(),
new FasterKvCacheOptions(),
new IFasterKvCacheSerializer[]
{
new MessagePackFasterKvCacheSerializer
{
Name = "MyTCache"
}
},
null);

Microsoft.Extensions.DependencyInjection

当然,我们也可以直接使用依赖注入的方式使用它,用起来也非常简单。按照通用和泛型版本的区别,我们使用不同的扩展方法即可:

var services = new ServiceCollection();
// use AddFasterKvCache
services.AddFasterKvCache(optiOns=>
{
// use MessagePack serializer
options.UseMessagePackSerializer();
}, "MyKvCache");
var provider = services.BuildServiceProvider();
// get instance do something
var cache = provider.GetService();

泛型版本需要调用相应的AddFasterKvCache方法:

var services = new ServiceCollection();
// use AddFasterKvCache
services.AddFasterKvCache<string>(optiOns=>
{
// use MessagePack serializer
options.UseMessagePackSerializer();
}, "MyKvCache");
var provider = services.BuildServiceProvider();
// get instance do something
var cache = provider.GetServicestring>>();

配置


FasterKvCache构造函数

public FasterKvCache(
string name, // 如果存在多个Cache实例,定义一个名称可以隔离序列化等配置和磁盘文件
ISystemClock systemClock, // 当前系统时钟,new DefaultSystemClock()即可
FasterKvCacheOptions? options, // FasterKvCache的详细配置,详情见下文
IEnumerable? serializers, // 序列化器,可以直接使用MessagePack或SystemTextJson序列化器
ILoggerFactory? loggerFactory) // 日志工厂 用于记录FasterKv内部的一些日志信息

FasterKvCacheOptions 配置项

对于FasterKvCache,有着和FasterKv差不多的配置项,更详细的信息大家可以看FasterKv-Settings,下方是FasterKvCache的配置:



  • IndexCount:FasterKv会维护一个hash索引池,IndexCount就是这个索引池的hash槽数量,一个槽为64bit。需要配置为2的次方。如1024(2的10次方)、 2048(2的11次方)、65536(2的16次方) 、131072(2的17次方)。默认槽数量为131072,占用1024kb的内存。

  • MemorySizeBit: FasterKv用来保存Log的内存字节数,配置为2的次方数。默认为24,也就是2的24次方,使用16MB内存。

  • PageSizeBit:FasterKv内存页的大小,配置为2的次方数。默认为20,也就是2的20次方,每页大小为1MB内存。

  • ReadCacheMemorySizeBit:FasterKv读缓存内存字节数,配置为2的次方数,缓存内的都是热点数据,最好设置为热点数据所占用的内存数量。默认为20,也就是2的20次方,使用16MB内存。

  • ReadCachePageSizeBit:FasterKv读缓存内存页的大小,配置为2的次方数。默认为20,也就是2的20次方,每页大小为1MB内存。

  • LogPath:FasterKv日志文件的目录,默认会创建两个日志文件,一个以.log结尾,一个以obj.log结尾,分别存放日志信息和Value序列化信息,注意,不要让不同的FasterKvCache使用相同的日志文件,会出现不可预料异常。默认为{当前目录}/FasterKvCache/{进程Id}-HLog/{实例名称}.log。

  • SerializerName:Value序列化器名称,需要安装序列化Nuget包,如果没有单独指定Name的情况下,可以使用MessagePackSystemTextJson。默认无需指定。

  • ExpiryKeyScanInterval:由于FasterKv不支持过期删除功能,所以目前的实现是会定期扫描所有的key,将过期的key删除。这里配置的就是扫描间隔。默认为5分钟。

  • CustomStore:如果您不想使用自动生成的实例,那么可以自定义的FasterKv实例。默认为null。

所以FasterKvCache所占用的内存数量基本就是(IndexCount*64)+(MemorySize)+ReadCacheMemorySize,当然如果Key的数量过多,那么还有加上OverflowBucketCount * 64


容量规划

从上面提到的内容大家可以知道,FasterKvCache所占用的内存字节基本就是(IndexCount * 64)+(MemorySize) + ReadCacheMemorySize + (OverflowBucketCount * 64)。磁盘的话就是保存了所有的数据+对象序列化的数据,由于不同的序列化协议有不同的大小,大家可以先进行测试。

内存数据存储到FasterKv存储引擎,每个key都会额外元数据信息,存储空间占用会有一定的放大,建议在磁盘空间选择上,留有适当余量,按实际存储需求的 1.2 - 1.5倍预估。

如果使用内存存储 100GB 的数据,总的访问QPS不到2W,其中80%的数据都很少访问到。那么可以使用 【32GB内存 + 128GB磁盘】 存储,节省了近 70GB 的内存存储,内存成本可以下降50%+。


性能

目前作者还没有时间将FasterKvCache和其它主流的缓存库进行比对,现在只对FasterKvCache、EasyCaching.FasterKv和EasyCaching.Sqlite做的比较。下面是FasterKVCache的配置,总占用约为2MB。

services.AddFasterKvCache<string>(optiOns=>
{
options.IndexCount = 1024;
options.MemorySizeBit = 20;
options.PageSizeBit = 20;
options.ReadCacheMemorySizeBit = 20;
options.ReadCachePageSizeBit = 20;
// use MessagePack serializer
options.UseMessagePackSerializer();
}, "MyKvCache");

由于作者笔记本性能不够,使用Sqlite无法在短期内完成100W、1W个Key的性能测试,所以我们在默认设置下将数据集大小设置为1000个Key,设置50%的热点Key。进行100%读、100%写和50%读写随机比较。

可以看到无论是读、写还是混合操作FasterKvCache都有着不俗的性能,在8个线程情况下,TPS达到了惊人的1600w/s。



























































































































































































































































































































缓存类型线程数Mean(us)Error(us)StdDev(us)Gen0Gen1Allocated
fasterKvCacheRead859.953.8542.5491.52597.02NULL
fasterKvCacheWrite863.671.0320.6830.79353.63NULL
fasterKvCacheRandom464.421.3920.9211.7098.38NULL
fasterKvCacheRead464.670.6280.3742.563511.77NULL
fasterKvCacheRandom864.803.6392.1661.09865.33NULL
fasterKvCacheWrite465.573.452.0530.97664.93NULL
fasterKvRead892.1510.6787.0635.7373-26.42 KB
fasterKvWrite499.4921.04610.7422-49.84 KB
fasterKvWrite8108.505.2283.1115.6152-25.93 KB
fasterKvRead4109.371.4760.77210.9863-50.82 KB
fasterKvRandom8119.9414.1759.3765.7373-26.18 KB
fasterKvRandom4124.316.1914.09510.7422-50.34 KB
fasterKvCacheRead1207.773.3071.739.277343.48NULL
fasterKvCacheRandom1208.711.8320.9586.347729.8NULL
fasterKvCacheWrite1211.261.5571.033.41816.13NULL
fasterKvWrite1378.6017.75511.74442.4805-195.8 KB
fasterKvRead1404.5717.47711.5643.457-199.7 KB
fasterKvRandom1441.2214.1079.33142.9688-197.75 KB
sqliteRead87450.11260.279172.15854.68757.8125357.78 KB
sqliteRead414309.94289.113172.047109.37515.625718.9 KB
sqliteRead156973.531,774.351,173.624001002872.18 KB
sqliteRandom8475535.01214,015.71141,558.14--395.15 KB
sqliteRandom41023524.8797,993.1964,816.43--762.46 KB
sqliteWrite81153950.8448,271.4728,725.58--433.7 KB
sqliteWrite42250382.93110,262.7272,931.96--867.7 KB
sqliteWrite14200783.0843,941.6929,064.71--3462.89 KB
sqliteRandom15383716.10195,085.96129,037.28--2692.09 KB

总结

可以看到FasterKvCache有着不俗的性能,目前也在笔者朋友的项目使用上了,反馈不错,解决了他的缓存问题。由于现在还只是1.0.0-rc1版本,还有很多特性没有实现。可能有一些BUG还存在,欢迎大家试用和反馈问题。

Github开源地址:
https://github.com/InCerryGit/FasterKvCache


参考链接

https://developer.aliyun.com/article/740811

外包项目可以找我,前端后端一锅端,作者:漫思,转载请注明原文链接:https://www.cnblogs.com/sexintercourse/p/16916668.html

如有疑问,请加我微信,maliang19860121,24小时在线战略合作伙伴



推荐阅读
  • MySQL缓存机制深度解析
    本文详细探讨了MySQL的缓存机制,包括主从复制、读写分离以及缓存同步策略等内容。通过理解这些概念和技术,读者可以更好地优化数据库性能。 ... [详细]
  • 网络运维工程师负责确保企业IT基础设施的稳定运行,保障业务连续性和数据安全。他们需要具备多种技能,包括搭建和维护网络环境、监控系统性能、处理突发事件等。本文将探讨网络运维工程师的职业前景及其平均薪酬水平。 ... [详细]
  • 本文深入探讨了 Redis 的两种持久化方式——RDB 快照和 AOF 日志。详细介绍了它们的工作原理、配置方法以及各自的优缺点,帮助读者根据具体需求选择合适的持久化方案。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 深入探讨CPU虚拟化与KVM内存管理
    本文详细介绍了现代服务器架构中的CPU虚拟化技术,包括SMP、NUMA和MPP三种多处理器结构,并深入探讨了KVM的内存虚拟化机制。通过对比不同架构的特点和应用场景,帮助读者理解如何选择最适合的架构以优化性能。 ... [详细]
  • 本文详细介绍了Python编程语言的学习路径,涵盖基础语法、常用组件、开发工具、数据库管理、Web服务开发、大数据分析、人工智能、爬虫开发及办公自动化等多个方向。通过系统化的学习计划,帮助初学者快速掌握Python的核心技能。 ... [详细]
  • Redis Hash 数据结构详解
    本文详细介绍了 Redis 中的 Hash 数据类型及其常用命令。Hash 类型用于存储键值对集合,支持多种操作如插入、查询、更新和删除字段值。此外,文章还探讨了 Hash 类型在实际业务场景中的应用,并提供了优化建议。 ... [详细]
  • 科研单位信息系统中的DevOps实践与优化
    本文探讨了某科研单位通过引入云原生平台实现DevOps开发和运维一体化,显著提升了项目交付效率和产品质量。详细介绍了如何在实际项目中应用DevOps理念,解决了传统开发模式下的诸多痛点。 ... [详细]
  • 随着Redis功能的不断增强和稳定性提升,其应用范围日益广泛,成为软件开发人员不可或缺的技能之一。本文将深入探讨Redis集群的部署与优化,包括主从备份机制、哨兵模式以及集群功能,帮助读者全面理解并掌握Redis集群的应用。 ... [详细]
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • 本文探讨了哪些数据库支持队列式的写入操作(即一个键对应一个队列,数据可以连续入队),并且具备良好的持久化特性。这类需求通常出现在需要高效处理和存储大量有序数据的场景中。 ... [详细]
  • 阿里云ecs怎么配置php环境,阿里云ecs配置选择 ... [详细]
  • Netflix利用Druid实现高效实时数据分析
    本文探讨了全球领先的在线娱乐公司Netflix如何通过采用Apache Druid,实现了高效的数据采集、处理和实时分析,从而显著提升了用户体验和业务决策的准确性。文章详细介绍了Netflix在系统架构、数据摄取、管理和查询方面的实践,并展示了Druid在大规模数据处理中的卓越性能。 ... [详细]
  • 本文详细介绍了如何在 MySQL 中授予和撤销用户权限。包括创建用户、赋予不同级别的权限(如表级、数据库级、服务器级)、使权限生效、查看用户权限以及撤销权限的方法。此外,还提供了常见错误及其解决方法。 ... [详细]
author-avatar
手机用户2502940417_253
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有