热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

[C++]std::ranges中的特征和自定义std::ranges::view变换

文章目录1.std::ranges中的特征1.1.std::ranges::range例子细化1.2.std::ranges::sized_range1.3.std::ranges




文章目录


    • 1. std::ranges中的特征
      • 1.1. std::ranges::range
        • 例子
        • 细化

      • 1.2. std::ranges::sized_range
      • 1.3. std::ranges::borrowed_range
      • 1.4. std::ranges::view

    • 2. std::ranges::subrange 迭代器-哨位对
      • 2.1. 构造
      • 2.2. 结构化解绑
      • 2.3. 操作

    • 3. std::views中的std::ranges::view变换
      • 3.1. std::ranges::view工厂构造
      • 3.2. std::views中的变换构造对象
      • 3.3. operator|()的流式变换
      • 3.4. 与其他语言的迭代器的变换操作比较
      • 3.5. 自定义std::ranges::view变换
        • 3.5.1. 常用的变换实现参考


    • 5. 迭代器特征
      • 4.1. std::input_or_output_iterator
      • 4.2. std::forward_iterator
      • 4.3. std::semiregular





为了方便诠释, 下面的定义均使用通俗易懂的叙述, 可能与实际定义有所出入, 一切以C++中定义的concept结果为准

自C++20起, 基于编译时多态的面向特征(trait)开始流行, 取代了面向对象. 如std::format也全面转向面向特征, 并获得了领先的运行效率和高度自由的扩展能力. 复杂的多继承转变为正交的特征组合, 是面向特征的一大特色

有命名空间的化简using std::views = std::ranges::views


1. std::ranges中的特征

下图是特征总览
在这里插入图片描述


1.1. std::ranges::range

struct Type {
iterator begin();
sentinel end();
}

要求


  • std::input_or_output_iterator iterator
  • std::semiregular sentinel
  • iteratorsentinel可做相等性比较

例子

下面是一个符合要求的std::ranges::range

struct Type {
int* begin();
int* end();
};
static_assert(std::ranges::range<MyType>);

C&#43;&#43;20前一般要求begin和end都返回一个迭代器, 在范围库中放宽了限制, 对于end只要能返回一个可比较的对象即可, 不要求对象可做迭代器都可以做的&#43;&#43;运算. 因此不再称end返回的对象为迭代器(iterator), 而称之为哨位(sentinel)

可以用std::ranges::iterator_tstd::ranges::sentinel_t从类型T中获取迭代器类型和哨位类型.
如要迭代器类型成立, 只需实现begin
如要哨位类型成立, 除了需要实现end, 还要实现begin


细化

设有std::ranges::range T, begin返回类型为iterator &#61; std::ranges::iterator_t, end返回类型为sentinel &#61; std::ranges::sentinel_t


  • 如果std::input_iterator iterator, 则有std::ranges::input_range T
  • 如果std::output_iterator iterator, 则有std::ranges::output_range T
  • 如果std::forward_iterator iterator, 则有std::ranges::forward_range T
  • 如果std::bidirectional_iterator iterator, 则有std::ranges::bidirectional_range T
  • 如果std::random_access_iterator iterator, 则有std::ranges::random_access_range T
  • 如果std::contiguous_iterator iterator, 则有std::ranges::contiguous_range T
  • 如果iterator &#61;&#61; sentinel, 则有std::ranges::common_range T
  • 如果std::ranges::view Tstd::ranges::borrowed_range T, 则有std::ranges::viewable_range T

1.2. std::ranges::sized_range

struct Type {
iterator begin();
sentinel begin();
size_t size(); // 可选
}

要求


  • std::ranges::range Type
  • 提供size函数
  • 能常数时间获取范围的长度

如果未提供size函数, 那么还要求


  • std::forward_iterator iterator
  • iteratorsentinel(及iterator)可作差

如果size或者iterator的作差不能用常数时间实现, 那么可以用特化


  • std::ranges::disable_sized_range &#61; true
  • std::disable_sized_sentinel_for &#61; true

强制关闭std::ranges::sized_rangestd::ranges::sized_sentinel_for的特征


1.3. std::ranges::borrowed_range

如果类型std::ranges::range T的值T tt.begin()t.end()获得的迭代器的生命周期与t无关, 那么可以认为是std::ranges::borrowed_range

由于语言层面无法自动识别生命周期的关系, 因此要特征能被识别, 还要手动特化std::ranges::enable_borrowed_rangetrue

但特别地, 类型T&自然满足std::ranges::borrowed_range


1.4. std::ranges::view

如果std::ranges::range的复制只需要常数的时间, 那么可以认为是std::ranges::view
由于语言层面无法自动识别复制所需的时间复杂度, 因此要特征能被识别, 还要手动开启特征

对于std::ranges::range T, 满足以下条件之一, 即认为实现std::ranges::view特征


  • 实现std::movable且特化std::ranges::enable_viewtrue
  • 或继承std::ranges::view_base
  • 或继承std::ranges::view_interface

另外如果std::ranges::range T继承std::ranges::view_interface, 那么在T满足一些条件时, 还能自动获得以下函数


  • empty(), 要求std::ranges::forward_range T
  • operator bool(), 要求std::ranges::forward_range T
  • data(), 要求std::contiguous_range T
  • size(), 要求std::ranges::forward_range T, 且iteratorsentinel(及iterator)可作差
  • front(), 要求std::ranges::forward_range T
  • back(), 要求std::ranges::bidirectional_range Tstd::ranges::common_range T
  • operator[](), 要求std::ranges::random_access_range T

2. std::ranges::subrange 迭代器-哨位对


2.1. 构造

将迭代器(Iterator i)和哨位(Sentinel s)结合为std::ranges::view std::ranges::subrange类型的对象, 满足std::ranges::viewable_ranges, 并且当


  • is对象可作差
  • 或手动指定类型为std::ranges::subrange
  • 或显式传递大小参数时

类型还实现std::ranges::sized_range


2.2. 结构化解绑

可以使用结构化解绑获取迭代器和哨位

auto [i, s] &#61; subrange;

也可以用std::get<0>std::get<1>分别获取迭代器和哨位


2.3. 操作


函数名操作简介返回值要求
next增加迭代器新的std::ranges::subrangestd::ranges::forward_iterator Iterator
prev减少迭代器新的std::ranges::subrangestd::ranges::bidirectional_iterator Iterator
advance自增/自减迭代器自身

以上操作只在迭代器增加/自增时有边界检查


3. std::views中的std::ranges::view变换


3.1. std::ranges::view工厂构造


  • 对象std::views::empty, void -> view, 使用std::views::empty即可直接获得对象
  • 对象std::views::single, any -> view, 单对象的std::ranges::view
  • 对象std::views::iota, iterator | (iterator, sentinel) -> view, 一般哨位边界的有限或无限递增序列
  • 对象std::views::counted, (iterator, count) -> view, 计数哨位边界的有限递增序列
  • 对象std::views::istream, istream -> view, 输入流转std::ranges::view
  • 类型std::ranges::subrange, (iterator, sentinel, [size]) | (borrowed_range, [size]) -> subvrange, 迭代器-哨位对
  • 类型std::ranges::ref_view, range -> viewable_range 借用
  • 类型std::ranges::owning_view, range -> viewable_range 占用
  • 对象std::views::repeat(C&#43;&#43;23), 重放
  • 对象std::views::cartesian_product(C&#43;&#43;23), 笛卡尔积
  • 等等

3.2. std::views中的变换构造对象


  • std::views::all, view -> ref_view | owning_view 借用或占用
  • std::views::filter(invokable), input_range & view -> input_range & view 过滤
  • std::views::transform(invokable), input_range & view -> input_range & view 映射
  • std::views::take(int), view -> subrange 取前一部分
  • std::views::join, input_range & view -> input_range & view 展平
  • std::views::split(forward_range & view), forward_range & view -> subrange 序列中的指定子序列为分割点划分序列
  • std::views::common, view -> common_range 同化iterator_tsentinel_t的类型, 以兼容旧的库函数

更多可见3.4. 与其他语言的迭代器的变换操作比较


3.3. operator|()的流式变换

std::views中的对象多为二段可调, 部分不需要参数的为一段可调


  • 二段可调
    std::views::take, 一段调用auto c &#61; std::views::take(10)获得变换c, 之后二段调用c(range)才真正施行变换
  • 一段可调
    std::views::join, 其自身就是变换, 一段调用std::views::join(range)即可施行变换

变换都实现有operator|运算, 可对运算左侧的对象实施变换, 如

range | std::views::all | std::views::common;
/* 等价于 */ std::views::common(std::views::all(range));

二段可调的对象一般不是变换, 需要赋予参数进行一段调用后才能得到变换

range | std::views::take(5) | std::views::filter([](auto const& it) { return true; });
/* 等价于 */ std::views::filter([](auto const& it) { return true; })(std::views::take(5)(range));

3.4. 与其他语言的迭代器的变换操作比较

其他语言的迭代器一般自带哨位, 对应到C&#43;&#43;来实际上是std::ranges::range的概念
以kotlin为例 Flow, Channel, Sequence, Iterable的接口对比


-kotlin Iterator/SequenceC&#43;&#43;20
编号withIndex/
遍历onEach
forEach
/
std::ranges::for_each
取值first
last
single
front
back
std::views::single(front())
查值contains
elementAt
find
findLast
indexOf
contains (部分)
operator[]
std::ranges::find std::ranges::find_if
std::ranges::find_end
/
归约fold
reduce
scan
toXxx
std::accumulate
/
/
std::views::to (C&#43;&#43;23)
统计count
all
any
none
average
maxOf
minOf
sum
std::ranges::count std::ranges::count_if
std::ranges::all_of
std::ranges::any_of
std::ranges::none_of
/
std::max_element
std::min_element
/
Map化associate
groupBy
/
/
拣选Map.keys
Map.values
/
std::views::keys
std::views::values
std::views::element
局部take
takeWhile
drop
dropWhile
windowed
/
std::views::take
std::views::take_while
std::views::drop
std::views::drop_while
/
std::views::stride (C&#43;&#43;23)
过滤filterstd::views::filter
映射map
/
/
std::views::transform
std::views::zip_transform (C&#43;&#43;23)
std::views::adjacent_transform (C&#43;&#43;23)
组合zip
zipWithNext
/
/
std::views::zip (C&#43;&#43;23)
/
std::views::slide (C&#43;&#43;23)
std::views::adjacent (C&#43;&#43;23)
解配对unzip/
合并plus/
二分partitionstd::ranges::partition
平坦化flatMap
flatten
joinTo
/
std::views::join
std::views::join_with
拆分String.splitstd::views::split
std::views::lazy_split
内组合chunked
/
std::views::chunk (C&#43;&#43;23)
std::views::chunk_by (C&#43;&#43;23)
值去抖distinct/
集合运算minus
intersect
subtract
union
/
/
/
/
重排shuffled
sorted
reverse
std::ranges::shuffle
/
std::views::reverse

3.5. 自定义std::ranges::view变换

可以走以下步骤


  • 写一个作为包装适配器的视图类, 至少实现std::ranges::range特征, 最好实现std::ranges::view特征
  • 写一个内部的迭代器类, 至少实现std::input_iterator特征
  • 如果视图类做变换不需要参数
    写一个可调用对象(函数也行), 接收参数转发给视图类
  • 如果视图类做变换需要参数
    写一个二段可调的可调用对象, 首次调用时传入参数做绑定, 二次调用时接收被变换的std::ranges::range, 转发给视图类

通常情况下, 都可以借助std::views::transform等基本工具来创建自定义变换, 如

inline constexpr auto plus(int n) {
return std::views::transform([&#61;](auto&& it) {
return std::forward<decltype(it)>(it) &#43; n;
});
};

然后就可有

range | plus(123);

3.5.1. 常用的变换实现参考


  • with_index: 附加计数器

inline constexpr auto with_index(size_t start &#61; 0) {
return std::views::transform([index &#61; start](auto&& it) mutable {
return std::make_tuple(index&#43;&#43;, std::forward<decltype(it)>(it));
});
};

用法

for (auto const& [index, value] : range | with_index()) {}

  • subtract: 差集

inline constexpr auto subtract(auto&& container) {
return std::views::filter([cont &#61; std::forward<decltype(container)>(container)](auto&& it) {
return std::ranges::find(cont, it) &#61;&#61; std::ranges::end(cont);
});
}

用法

range | subtract(std::array{ v1, v2, v3 });

  • to: 输出到容器 (标准库版本在C&#43;&#43;23实现) (只处理右值, 未正确处理左值引用)

template<typename Cont>
struct ToFn {
auto operator()(std::ranges::range auto&& r) {
std::ranges::copy(std::forward<decltype(r)>(r), std::back_inserter(cont));
return std::move(cont);
}
Cont cont;
};
template<typename Cont>
auto operator|(std::ranges::range auto&& r, ToFn<Cont>&& toFn) {
return std::move(toFn)(std::forward<decltype(r)>(r));
}
inline constexpr auto to(auto&& container) {
return ToFn<decltype(container)>{ std::forward<decltype(container)>(container) };
}

用法

auto vec &#61; std::array{1, 2, 3} | to(std::vector<int>{});

  • on_each_indexed: 附加计数的遍历

inline constexpr auto on_each_indexed(auto&& func, size_t start &#61; 0) {
return std::views::filter([index &#61; start, func &#61; std::forward<decltype(func)>(func)](auto& value) mutable {
func(index&#43;&#43;, value);
return true;
});
}

注: 变换一般为惰性的, 需要用for遍历激活流, 否则流的计算不会触发
用法

for (auto const& item : arr | on_each_indexed([](size_t index, auto& value) {
std::cout << index << ":" << value << ",";
})) {}

5. 迭代器特征

下面是特征关系总览
在这里插入图片描述


4.1. std::input_or_output_iterator

下面是一个符合要求的std::input_or_output_iterator

struct Iter {
using difference_type &#61; ptrdiff_t;
MyIter& operator&#43;&#43;() { return *this; }
MyIter operator&#43;&#43;(int) { return *this; }
int operator*() const { return 0; }
};

4.2. std::forward_iterator

下面是一个符合要求的std::forward_iterator

struct Iter {
using difference_type &#61; ptrdiff_t;
using value_type &#61; int;
MyIter& operator&#43;&#43;() { return *this; }
MyIter operator&#43;&#43;(int) { return *this; }
int operator*() const { return 0; }
bool operator&#61;&#61;(MyIter const& other) const { return true; }
};

4.3. std::semiregular

下面是一个符合要求的std::semiregular

struct Type {};






推荐阅读
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • 本文详细介绍了如何使用 Yii2 的 GridView 组件在列表页面实现数据的直接编辑功能。通过具体的代码示例和步骤,帮助开发者快速掌握这一实用技巧。 ... [详细]
  • 本文深入探讨了 Java 中的 Serializable 接口,解释了其实现机制、用途及注意事项,帮助开发者更好地理解和使用序列化功能。 ... [详细]
  • 本文深入探讨了C++对象模型中的一些细节问题,特别是虚拟继承和析构函数的处理。通过具体代码示例和详细分析,揭示了书中某些观点的不足之处,并提供了更合理的解释。 ... [详细]
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 深入理解Tornado模板系统
    本文详细介绍了Tornado框架中模板系统的使用方法。Tornado自带的轻量级、高效且灵活的模板语言位于tornado.template模块,支持嵌入Python代码片段,帮助开发者快速构建动态网页。 ... [详细]
  • Python自动化处理:从Word文档提取内容并生成带水印的PDF
    本文介绍如何利用Python实现从特定网站下载Word文档,去除水印并添加自定义水印,最终将文档转换为PDF格式。该方法适用于批量处理和自动化需求。 ... [详细]
  • 深度学习理论解析与理解
    梯度方向指示函数值增加的方向,由各轴方向的偏导数综合而成,其模长表示函数值变化的速率。本文详细探讨了导数、偏导数、梯度等概念,并结合Softmax函数、卷积神经网络(CNN)中的卷积计算、权值共享及池化操作进行了深入分析。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 本文详细介绍了C语言中链表的两种动态创建方法——头插法和尾插法,包括具体的实现代码和运行示例。通过这些内容,读者可以更好地理解和掌握链表的基本操作。 ... [详细]
  • andr ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 本文介绍了如何通过扩展 UnityGUI 创建自定义和复合控件,以满足特定的用户界面需求。内容涵盖简单和静态复合控件的实现,并展示了如何创建复杂的 RGB 滑块。 ... [详细]
  • 本文详细介绍了中央电视台电影频道的节目预告,并通过专业工具分析了其加载方式,确保用户能够获取最准确的电视节目信息。 ... [详细]
  • Java编程实践:深入理解方法重载
    本文介绍了Java中方法重载的概念及其应用。通过多个示例,详细讲解了如何在同一类中定义具有相同名称但不同参数列表的方法,以实现更灵活的功能调用。 ... [详细]
author-avatar
手机用户2502940425
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有