热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

zookeeper原理浅析(二)

参考:https:www.cnblogs.comleocookpzk_1.html代码:https:github.comlittlecarzzzooke


参考:https://www.cnblogs.com/leocook/p/zk_1.html


代码:https://github.com/littlecarzz/zookeeper


1. 数据模型


1.1. 只适合存储小数据


Zk维护着一个逻辑上的树形层次结构,树中的节点称为znode,个znode都有一个ACL(权限控制)。Zookeeper是被设计用来协调服务的,因此znode里存储的都是小数据,而不是大容量的数据,数据容量一般在1MB范围内。


1.2. 操作的原子性


Znode的数据读写是原子的,要么读或写了完整的数据,要么就失败,不会出现只读或写了部分数据。


1.3. Znode的路径


和Unix中的文件系统路径格式很想,但是只支持绝对路径,不支持相对路径,也不支持点号(”.”和”..”)。


1.4. 短暂的znode和持久的znode


Znode有两种类型:短暂的和持久的。短暂的znode生命周期仅限创建它的客户端与服务器端之间的连接没有断开,客户端断开连接后,znode将会被删除。


1.5. 顺序znode


名称中包含Zookeeper指定顺序号的znode。若在创建znode时设置了顺序标识,那么该znode被创建后,名字的后边将会附加一串数字,该数字是由一个单调递增的计数器来生成的。例如,创建节点时传入的path是”/aa/bb”,创建后的则可能是”/aa/bb0002”,再次创建后是”/aa/bb0003”。


Znode的创建模式CreateMode有四种,分别是:EPHEMERAL(短暂的znode)、EPHEMERAL_SEQUENTIAL(短暂的顺序znode)、PERSISTENT(持久的znode)和PERSISTENT_SEQUENTIAL(持久的顺序znode)。如果您已经看过了上篇博文,那么这里的api调用应该是很好理解的,见:http://www.cnblogs.com/leocook/p/zk_0.html。


1.6. 观察


这部分在上篇博文中已经做了详细的说明,包括连接的观察和znode的观察,这部分在构建一个稳定的zookeeper应用中有着很重要的作用,具体会在下边说到。


2.  ACL


即:Access Control List(访问控制列表)。Znode被创建时带有一个ACL列表,zk提供了下边三种身份验证模式:


  • digest

用户名+密码验证。


  • host

客户端主机名hostname验证。


  • ip

客户端的IP验证。


  • auth

使用sessionID验证


  • world

无验证,默认是无任何权限。该模式较为特殊,在zk连接添加ACL中会说到


ACL权限对应如下表:



在设置ACL时,可以给zk客户端和服务器端的连接设置ACL,也可以在创建znode时,给znode设置ACL,在创建了znode后,如果有zk客户端来操作znode,只有满足权限要求时,才能完成相对应的操作:


2.1. 给ZK连接添加ACL


可使用zk对象的addAuthInfo()方法来添加验证模式,如使用digest模式进行身份验证:zk.addAuthInfo(“digest”,”username:passwd”.getBytes());


在zookeeper对象被创建时,初始化会被添加world验证模式。world身份验证模式的验证id是”anyone”。


若该连接创建了znode,那么他将会被添加auth身份验证模式的验证id是””,即空字符串,这里将使用sessionID进行验证。


2.2. 给znode设置ACL


  • 自己创建ACL

创建ACL对象时,可用ACL类的构造方法ACL(int perms, Id id):


其中参数perms表示权限,在接口org.apache.zookeeper.ZooDefs.Perms中有相关的常量:READ、WRITE、CREATE、DELETE、ALL和ADMIN,它们值如下表:



Id参数是验证模式,可用构造方法Id(String scheme, String id)来创建。参数scheme是验证模式,digest、host或ip,id是对应的验证,digest对应用户名和密码对,如“user:passwd”;host对应主机名,如”localhost”;ip对应ip地址,如”192.168.1.120”。


  • 使用api中预设的ACL

在创建znode时可以设置该znode的ACL列表。接口org.apache.zookeeper.ZooDefs.Ids中有一些已经设置好的权限常量,例如:


(1)、OPEN_ACL_UNSAFE:完全开放。事实上这里是采用了world验证模式,由于每个zk连接都有world验证模式,所以znode在设置了OPEN_ACL_UNSAFE时,是对所有的连接开放。


(2)、CREATOR_ALL_ACL:给创建该znode连接所有权限。事实上这里是采用了auth验证模式,使用sessionID做验证。所以设置了CREATOR_ALL_ACL时,创建该znode的连接可以对该znode做任何修改。


(3)、READ_ACL_UNSAFE:所有的客户端都可读。事实上这里是采用了world验证模式,由于每个zk连接都有world验证模式,所以znode在设置了READ_ACL_UNSAFE时,所有的连接都可以读该znode。


注:红色部分是本人阅读源码的一些研究,auth和world的相关描述经供参考。


3. 运行模式


Zookeeper有两种运行模式:独立模式(standalone mode)和复制模式(replicated mode)。


3.1. 独立模式


只有一个zookeeper服务实例,不可保证高可靠性和恢复性,可在测试环境中使用,生产环境不建议使用。


3.2. 复制模式


复制模式也就是集群模式,有多个zookeeper实例在运行,建议多个zk实例是在不同的服务器上。集群中不同zookeeper实例之间数据不停的同步。有半数以上的实例保持正常运行,zk服务就能正常运行,例如:有5个zk实例,挂了2个,还剩3个,依然可以正常工作;如有6个zk实例,挂了3个,则不能正常工作。


每个znode的修改都会被复制到超过半数的机器上,这样就会保证至少有一台机器会保存最新的状态,其余的副本最终都会跟新到这个状态。Zookeeper为实现这个功能,使用了Zab协议,该协议有两个可以无限重复的阶段:


  • 选举领导

集群中所有的zk实例会选举出来一个“领导实例”(leader),其它实例称之为“随从实例”(follower)。如果leader出现故障,其余的实例会选出一台leader,并一起提供服务,若之前的leader恢复正常,便成为follower。选举follower是一个很快的过程,性能影响不明显。


Leader主要功能是协调所有实例实现写操作的原子性,即:所有的写操作都会转发给leader,然后leader会将更新广播给所有的follower,当半数以上的实例都完成写操作后,leader才会提交这个写操作,随后客户端会收到写操作执行成功的响应。


  • 原子广播

上边已经说到:所有的写操作都会转发给leader,然后leader会将更新广播给所有的follower,当半数以上的实例都完成写操作后,leader才会提交这个写操作,随后客户端会收到写操作执行成功的响应。这么来的话,就实现了客户端的写操作的原子性,每个写操作要么成功要么失败。逻辑和数据库的两阶段提交协议很像。


3.3. 复制模式下的数据一致性


Znode的每次写操作都相当于数据库里的一次事务提交,每个写操作都有个全局唯一的ID,称为:zxid(ZooKeeper Transaction)。ZooKeeper会根据写操作的zxid大小来对操作进行排序,zxid小的操作会先执行。zk下边的这些特性保证了它的数据一致性:


  • 顺序一致性

任意客户端的写操作都会按其发送的顺序被提交。如果一个客户端把某znode的值改为a,然后又把值改为b(后面没有其它任何修改),那么任何客户端在读到值为b之后都不会再读到a。


  • 原子性

这一点再前面已经说了,写操作只有成功和失败两种状态,不存在只写了百分之多少这么一说。


  • 单一系统映像

客户端只会连接host列表中状态最新的那些实例。如果正在连接到的实例挂了,客户端会尝试重新连接到集群中的其他实例,那么此时滞后于故障实例的其它实例都不会接收该连接请求,只有和故障实例版本相同或更新的实例才接收该连接请求。


  • 持久性

写操作完成之后将会被持久化存储,不受服务器故障影响。


  • 及时性

在对某个znode进行读操作时,应该先执行sync方法,使得读操作的连接所连的zk实例能与leader进行同步,从而能读到最新的类容。


注意:sync调用是异步的,无需等待调用的返回,zk服务器会保证所有后续的操作会在sync操作完成之后才执行,哪怕这些操作是在执行sync之前被提交的。


4. 提高ZooKeeper应用的容错


分布式环境是很复杂的,网络的不可靠、单点故障等问题都是经常发生的。那么在构建一个分布式应用程序时,这些问题都是需要慎重考虑的。因此,如何构建一个可复原的分布式应用将成为一个值得讨论的话题。Java api中每个异常都对应一类故障模式,下边我们将会以Java api中的异常为例来讨论ZooKeeper应用程序中可能会出现的一些故障。


4.1. Java API中的一些常见异常


  • InterruptedException异常

若客户端的某操作被中断,则会抛出InterruptedException异常。抛出该异常时,不一定是出现故障,只能表明某个zookeeper操作被中断而已。


  • KeeperException异常

服务器发出错误信号或是服务器存在通信故障。该类现在共有21个子类, 分为3大类:


 (1)、状态异常


当一个客户端对zk的某操作失败时,就会出现状态异常。例如:更新数据时所指定的版本号不正确就会抛出异常BadVersionException、若在短暂的znode下创建子节点则会抛出异常NoChildrenForEphemeralsException。


(2)、可恢复的异常


那些在zk会话中可以恢复的异常叫可恢复的异常。当丢失zk连接时就会抛出异常ConnectionLossException,这时zk会自动尝试重新连接,以确保会话的完整性。Zk无法判断ConnectionLossException异常相关的操作是否成功执行,有可能出现只完成部分,那么是否重新执行刚才的操作就得知道该操作是否是等幂的。


等幂操作是指一次或多次执行都会产生相同结果的操作;非等幂操作是指一次或多次执行会产生不相同结果的操作。非等幂操作就不能盲目操作了。


写操作里有创建、删除、修改。在一个分布式环境中,删除zk里的znode或是修改znode的数据是等幂的,只有创建znode可能不是等幂的,创建顺序znode就是一个非等幂的操作。


那么怎么样才能避免创建顺序znode不会出现重复创建呢?下面我来展开讨论:


假设的场景:


客户端:客户端任务是在连接到zk服务端时会只创建一个顺序znode;


ConnectionLossException:抛出ConnectionLossException异常重新连接后会话没有失效, 但是zk无法判断创建znode的操作是否成功。


我们知道顺序znode的节点名称格式是形如”znodeName”,zk客户端和服务器端的会话有个全局唯一的sessionID,我们可以把sessionID加入znode的名称中,形如:” znodeName”,sequentialNumber是相对于父znode唯一的。这样我们在创建某个znode之前先判断一下父znode下有无名称形如” znodeName“这样字符开头的子znode,就能确保每个客户端连接只创建一个znode。


这种场景会在什么时候会遇到呢?在我们要实现一个分布式锁的时候,核心思想之一就在这里。那么问题来了,什么是分布式锁呢?后面会有独立的博文来讲解关于它的代码实现。


(3)、不可恢复的异常


不可恢复的异常发生时,所有的短暂znode都将会丢失,只有程序中显示的重建zk连接,并重建znode的状态。例如:会话过期会抛出异常SessionExpiredException,身份验证失败会抛出异常AuthFailedException。


(4)、异常捕捉处理


每个子类对应一种异常状态,且每个子类都对应一个关于错误类型的信息代码,可以通过code方法拿到。 处理该种异常有两种办法:


1、通过检测错误代码(可调用code方法老获取)来确定是哪种异常,再决定应该采取何种补救措施;


2、通过追捕等价的KeeperException异常,然后再每段捕捉代码中执行相应的操作。


4.2. 构建可靠的zookeeper应用


上面说到了zk服务器端可能出现一些网络故障或单点故障登,那么怎么编写一个可靠的zk客户端程序来应对可能不稳定的zk实例呢?这里我们向一个znode写数据为例,来实现它:




/**

* 显示配置
* @throws KeeperException 服务器发出错误信号或是服务器存在通信故障。该类现在共有21个子类,
* 分为3大类:

* 1、状态异常(如:BadVersionException、NoChildrenForEphemeralsException);
* 2、可恢复的异常(如:ConnectionLossException);
* 3、不可恢复的异常(如:SessionExpiredException、AuthFailedException)。
* 每个子类对应一种异常状态,且每个子类都对应一个关于错误类型的信息代码,可以通过code方法拿到。
* 处理该种异常有两种办法:

* 1、通过检测错误代码来决定应该采取何种补救措施;

* 2、通过追捕等价的KeeperException异常,然后再每段捕捉代码中执行相应的操作。
* @throws InterruptedException zookeeper操作被中断。并不一定就是出现故障,只能表明相对应的操作被取消
*/
public static void write(String path, String value) throws KeeperException, InterruptedException {
int retries = 0;

while (true) {
try {
Stat stat = zk.exists(path, false);
if(stat == null){
zk.create(path, value.getBytes(CHARSET), Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
}else {
zk.setData(path, value.getBytes(CHARSET), -1);
}
break;
} catch(KeeperException.SessionExpiredException e){
//TODO 此处会话过期,抛出异常,由上层调用来重新创建zookeeper对象
throw e;
}catch(KeeperException.AuthFailedException e){
//TODO 此处身份验证时,抛出异常,由上层来终止程序运行
throw e;
}catch (KeeperException e) {
//检查有没有超出尝试的次数
if(retries == MAXRETRIES){
throw e;
}
retries++;
TimeUnit.SECONDS.sleep(RETRY_PERIOD_SECONDS);
}
}
}


如果您是一名Java开发人员,那么我觉得上面的这些代码没什么好解释的了。下边看上层调用是怎么处理的:




int flag = 0;


while (true) {
try {
write(path, value);
break;
} catch (KeeperException.SessionExpiredException e) {
// TODO: 重新创建、开始一个新的会话
e.printStackTrace();
zk = new ZooKeeper(hosts, SESSION_TIMEOUT, this);
} catch (KeeperException e) {
// TODO 尝试了多次,还是出错,只有退出了
e.printStackTrace();
flag = 1;
break;
}catch(KeeperException.AuthFailedException e){
//TODO 此处身份验证时,终止程序运行
e.printStackTrace();
flag = 1;
break;
} catch (IOException e) {
// TODO 创建zookeeper对象失败,无法连接到zk集群
e.printStackTrace();
flag = 1;
break;
}
}
System.exit(flag);


关于编写一个可恢复的zookeeper应用,这一块理解了,其它地方应该就是触类旁通了。


后边就是应用zookeeper开发,例如分布式配置系统、分布式锁的实现。


 


参考地址:http://zookeeper.apache.org/doc/r3.4.6/


参考书籍:《hadoop权威指南》


转载于:https://www.cnblogs.com/xc-chejj/p/10933905.html



推荐阅读
  • PTArchiver工作原理详解与应用分析
    PTArchiver工作原理及其应用分析本文详细解析了PTArchiver的工作机制,探讨了其在数据归档和管理中的应用。PTArchiver通过高效的压缩算法和灵活的存储策略,实现了对大规模数据的高效管理和长期保存。文章还介绍了其在企业级数据备份、历史数据迁移等场景中的实际应用案例,为用户提供了实用的操作建议和技术支持。 ... [详细]
  • PHP自学必备:从零开始的准备工作与工具选择 ... [详细]
  • 本文探讨了 Kafka 集群的高效部署与优化策略。首先介绍了 Kafka 的下载与安装步骤,包括从官方网站获取最新版本的压缩包并进行解压。随后详细讨论了集群配置的最佳实践,涵盖节点选择、网络优化和性能调优等方面,旨在提升系统的稳定性和处理能力。此外,还提供了常见的故障排查方法和监控方案,帮助运维人员更好地管理和维护 Kafka 集群。 ... [详细]
  • 在CentOS系统中部署与配置ZooKeeper详解 ... [详细]
  • Python 实战:异步爬虫(协程技术)与分布式爬虫(多进程应用)深入解析
    本文将深入探讨 Python 异步爬虫和分布式爬虫的技术细节,重点介绍协程技术和多进程应用在爬虫开发中的实际应用。通过对比多进程和协程的工作原理,帮助读者理解两者在性能和资源利用上的差异,从而在实际项目中做出更合适的选择。文章还将结合具体案例,展示如何高效地实现异步和分布式爬虫,以提升数据抓取的效率和稳定性。 ... [详细]
  • FastDFS Nginx 扩展模块的源代码解析与技术剖析
    FastDFS Nginx 扩展模块的源代码解析与技术剖析 ... [详细]
  • 本文深入探讨了CGLIB BeanCopier在Bean对象复制中的应用及其优化技巧。相较于Spring的BeanUtils和Apache的BeanUtils,CGLIB BeanCopier在性能上具有显著优势。通过详细分析其内部机制和使用场景,本文提供了多种优化方法,帮助开发者在实际项目中更高效地利用这一工具。此外,文章还讨论了CGLIB BeanCopier在复杂对象结构和大规模数据处理中的表现,为读者提供了实用的参考和建议。 ... [详细]
  • 本文探讨了利用Java实现WebSocket实时消息推送技术的方法。与传统的轮询、长连接或短连接等方案相比,WebSocket提供了一种更为高效和低延迟的双向通信机制。通过建立持久连接,服务器能够主动向客户端推送数据,从而实现真正的实时消息传递。此外,本文还介绍了WebSocket在实际应用中的优势和应用场景,并提供了详细的实现步骤和技术细节。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • 构建高可用性Spark分布式集群:大数据环境下的最佳实践
    在构建高可用性的Spark分布式集群过程中,确保所有节点之间的无密码登录是至关重要的一步。通过在每个节点上生成SSH密钥对(使用 `ssh-keygen -t rsa` 命令并保持默认设置),可以实现这一目标。此外,还需将生成的公钥分发到所有节点的 `~/.ssh/authorized_keys` 文件中,以确保节点间的无缝通信。为了进一步提升集群的稳定性和性能,建议采用负载均衡和故障恢复机制,并定期进行系统监控和维护。 ... [详细]
  • 分布式开源任务调度框架 TBSchedule 深度解析与应用实践
    本文深入解析了分布式开源任务调度框架 TBSchedule 的核心原理与应用场景,并通过实际案例详细介绍了其部署与使用方法。首先,从源码下载开始,详细阐述了 TBSchedule 的安装步骤和配置要点。接着,探讨了该框架在大规模分布式环境中的性能优化策略,以及如何通过灵活的任务调度机制提升系统效率。最后,结合具体实例,展示了 TBSchedule 在实际项目中的应用效果,为开发者提供了宝贵的实践经验。 ... [详细]
  • Linux 信号处理全面解析(第六篇)
    本文深入探讨了信号及其来源。信号本质上是对中断机制的软件层面模拟,从原理上看,进程接收到信号与处理器接收到中断请求类似。信号具有异步特性,能够在进程执行过程中随时触发,从而中断当前操作并执行相应的处理程序。文章详细分析了信号的生成、传递和处理机制,并讨论了常见的信号类型及其应用场景。此外,还介绍了如何在 Linux 系统中使用信号进行进程间通信和错误处理,为开发者提供了实用的技术指导。 ... [详细]
  • 在PHP中如何正确调用JavaScript变量及定义PHP变量的方法详解 ... [详细]
  • 技术分享:使用 Flask、AngularJS 和 Jinja2 构建高效前后端交互系统
    技术分享:使用 Flask、AngularJS 和 Jinja2 构建高效前后端交互系统 ... [详细]
  • Docker入门指南:初探容器化技术
    Docker入门指南:初探容器化技术摘要:Docker 是一个使用 Go 语言开发的开源容器平台,旨在实现应用程序的构建、分发和运行的标准化。通过将应用及其依赖打包成轻量级的容器,Docker 能够确保应用在任何环境中都能一致地运行,从而提高开发和部署的效率。本文将详细介绍 Docker 的基本概念、核心功能以及如何快速上手使用这一强大的容器化工具。 ... [详细]
author-avatar
上海十里红妆婚礼策划红_196
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有