热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

从SVM到多核学习MKL

SVM是机器学习里面最强大最好用的工具之一,它试图在特征空间里寻找一个超平面,以最小的错分率把正负样本分开。它的强大之处还在于,当样本在原特征空间中线性不可分,即找不到一个足够好的超平面时,可以利用核

SVM是机器学习里面最强大最好用的工具之一,它试图在特征空间里寻找一个超平面,以最小的错分率把正负样本分开。它的强大之处还在于,当样本在原特征空间中线性不可分,即找不到一个足够好的超平面时,可以利用核(kernel)函数,将特征映射到希尔伯特(Hilbert)空间。后者一般维度更高,通过这样的映射之后,样本在新的特征空间中便是线性可分的了。

记得刚刚学习SVM的时候,对“核”这个词很恐惧,一直理解不了它究竟是什么。在看MKL的时候,又经常会遇到“核矩阵”(kernel matrices)这个词。现在说一下我的理解。

刚才说过,我们通过核把特征从低维空间映射到高维空间。举例来说,我们看下面的多项式核函数:

其中x,y是两个样本,他们的特征分别是(x1,x2),(y1,y2),通过这个核函数,可以看到二维特征被映射到了六维特征。而且我们也可以理解,这个映射其实就是用一个矩阵A乘以原来的特征(x1,x2)得到的。矩阵A也就是核矩阵了。一个核函数对应一个核矩阵。

我们学过的SVM都是单核(single kernel)的,在使用的时候,需要我们根据经验或试验来选择用哪种核函数、怎样指定它的参数,这样很不方便。另一方面,实际应用当中,特征往往不是single domain的,而是异构的。拿图像分类来说,我们可能用到颜色相关的特征、纹理相关的特征、空间相关的特征,这几类特征对应的最佳的核函数未必相同,让他们共用同一个核函数,未必能得到最优的映射。对这些问题的思考,就引出了MKL。

简单地说,我们给定一些base kernels,比如linear,Polynomial,RBF,Sigmoid,对于每一个,可以指定多组参数,也就是一共有M个base kernels,我们想用它们的线性组合来作为最终的核函数。通过training,得到这个线性组合中每个kernel的权重d(weight)。由于融合了各种kernel,可以照顾到异构的特征;由于自动学习权重,我们就不需要费脑子想究竟用哪一个核哪一种参数,把可能的核、参数都拿过来,组合着来用就可以了。

与传统的单核SVM的不同,就是除了要学习w、b之外,还要学习上面提到的权重d。这样的话,decision function, cost function都会有些变化,棘手的是,cost function 的求解不再是一个convex problem,传统的优化方法就不适用了。近年来MKL比较热,很多论文都是在优化方法上面下功夫,企图达到更快的收敛速度、更好的解。具体的优化方法就比较复杂了,略去。

多核线性组合,最经典的是simpleMKL,也被作为MKL的具体实现,应用在了计算机各领域。为了使MKL应用地更广,应对各种特征组合、各种样本量级,后来又有人提出了GMKL,G即Generalized,最优化方法用的是PGD(Projected Gradient Descend)。为了改进收敛效果,Vishwanathan又提出SPG-GMKL(Spectral Projected Gradient),同时提出了多核的product组合。SPG-GMKL也被后来者视作state-of-art。

除了MKL,还有一个MKB(Multiple Kernel Boosting),大连理工大学的卢湖川有几篇论文就是用MKB做跟踪。论文生成MKB是基于MKL的,我觉得不然。请看MKB的框架图:

这里的确用到多核,但每一个SVM都是单核的,根本没有用到多核训练的东西。本质上就是训练出M * N个single-kernel SVM,然后用boosting的方法,把这些弱分类器ensemble为一个强分类器。用到的就是传统的SVM加传统的boosting,只是名字新,实质并无新意。

TKDE12 有一篇 MKBoost论文,这应该是正宗的MKB,它提出了一个框架,并提供了几个formulation,然后与MKL做了比较。论文中全是公式,没有看,以后需要的时候再研究吧。

MKL的经典实现有SimpleMKL,Shogun,SPG-GMKL,SMO-MKL,Google一下就可以找到。

如果只是要使用MKL,可以不看论文中的推导,更多的是看看上述几种实现附带的例子;可以看看MKL在跟踪、图像分类中的使用,输入输出是什么;可以看看这个和这个教程,简单易懂。


推荐阅读
  • 支持向量机(SVM)是一种基于统计学习理论的模型,主要在VC维和结构风险最小化的理论基础上发展而来。本文将探讨几种不同的SVM方法及其优化策略,旨在提高模型的效率和适用性。 ... [详细]
  • 大数据时代的机器学习:人工特征工程与线性模型的局限
    本文探讨了在大数据背景下,人工特征工程与线性模型的应用及其局限性。随着数据量的激增和技术的进步,传统的特征工程方法面临挑战,文章提出了未来发展的可能方向。 ... [详细]
  • 支持向量机(SVM)算法综述
    支持向量机(Support Vector Machine, SVM)是由Cortes和Vapnik于1995年首次提出的一种机器学习算法。SVM在处理小样本、非线性及高维模式识别问题上表现出显著的优势,并广泛应用于函数拟合等其他机器学习任务中。 ... [详细]
  • AI炼金术:KNN分类器的构建与应用
    本文介绍了如何使用Python及其相关库(如NumPy、scikit-learn和matplotlib)构建KNN分类器模型。通过详细的数据准备、模型训练及新样本预测的过程,展示KNN算法的实际操作步骤。 ... [详细]
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 支持向量机(SVM)在机器学习中的应用与学习心得
    支持向量机(SVM)是一种高效的二分类模型,其核心目标是通过寻找最优超平面来区分不同类别的数据点。在实际应用中,SVM能够有效地处理高维数据,并通过核技巧扩展到非线性分类问题。当新的数据点输入时,SVM会根据其相对于超平面的位置来判定其所属类别。训练过程中,SVM通过最大化间隔来确定最优超平面,从而提高模型的泛化能力。本文总结了SVM在机器学习中的应用及其学习心得,探讨了其在实际问题中的优势和局限性。 ... [详细]
  • 如何选择机器学习方法http:scikit-learn.orgstabletutorialmachine_learning_mapindex.html通用学习模式只需要先定义 ... [详细]
  • 分隔超平面:将数据集分割开来的直线叫做分隔超平面。超平面:如果数据集是N维的,那么就需要N-1维的某对象来对数据进行分割。该对象叫做超平面,也就是分类的决策边界。间隔:一个点 ... [详细]
  • 这是我在复习时整理的笔记,过一遍就稳了,建议还是把PPT过一遍,老师考的都是基础题,大部分都在PPT上,特别是 ... [详细]
  • 本文档详细介绍了思科交换机的基本配置命令,包括进入特权模式、配置交换机名称及密码、VLAN配置、端口访问、查看配置信息、恢复出厂设置以及远程登录设置等。 ... [详细]
  • Android中解析XML文件的实践指南
    本文详细介绍了在Android应用开发中解析XML文件的方法,包括从本地文件和网络资源获取XML文件的不同途径,以及使用DOM、SAX和PULL三种解析方式的具体实现。 ... [详细]
  • 前言Git是目前最流行的版本控制系统,在它的基础之上,GitHub和GitLab成为当前最流行的代码托管平台,它们均提供的代码评审、项目管理、持续集成等功能,越来越多的互联网企业都 ... [详细]
  • 本文将探讨从ASP.NET 1.1到2.0期间编译系统的重要变革。通过对比两个版本的即时编译模型,我们将揭示2.0版本中引入的新特性和改进之处。 ... [详细]
author-avatar
润秋赋_137
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有