热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

resnet,retinanet,fpn网络结构及pytorch实现代码

关于resnet,其巧妙地利用了shortcut连接,解决了深度网络中模型退化的问题。网络结构如下FPN的目的熟悉fasterrcnn的人都知道,fasterrcnn利用的是vgg

关于resnet,其巧妙地利用了shortcut连接,解决了深度网络中模型退化的问题。网络结构如下

resnet,retinanet,fpn网络结构及pytorch实现代码

FPN的目的

熟悉faster rcnn的人都知道,faster rcnn利用的是vgg的最后卷积特征,大小是7*7*512.而这造成了一个问题,经过多次卷积之后的特征通常拥有很大的感受野,它们比较适合用来检测大物体,或者说,它们在检测小物体任务上效果很差,所以像ssd和fpn这样的网络思想就是将前面和后面的卷积层都拿出来,组成一个multiscale 结果,既能检测大物体,也能检测小物体。

基于这个思想,fpn从resnet 34层模型构造了一组新的特征,p2,p3,p4,p5,每一个p_i都是resnet中不同卷积层融合的结果,这保证了他们拥有多尺度信息,他们拥有相同的维度,都是256。

resnet,retinanet,fpn网络结构及pytorch实现代码

bottom-up就是简单的使用了ResNet34,主要是top-down中的思想。
在上文中我们提到c2-c5的大小和维度分别是56x56x64,28x28x128,14x14x256,7x7x512,所以在top-down中,先用了一个1x1x256的卷积将c5:7x7x512 变成了m5:7x7x256, 每一个m之后都接了一个3x3x256卷积用来消除不同层之间的混叠效果,其实也就是缓冲作用。
关于p4的构造,我们先将m5的feature map加倍,用简单的nearest neighbour upsamping方法就行,这样m5就变成了m5’:14x14x256,同时c4:14x14x256经过1x1x256得到c4’:14x14x256, 将m5’+c4’, element-wisely,就可以得到m4:14x14x256。

所以最后的p2-p5大小分别是
56x56x256。,28x28x256,14x14x256,7x7x256。

在理解了fpn的基本操作之后,我们来看看RetineNet里面,多层次特征是怎么得到的。

首先,retinanet中使用的是resnet50,上面的图片已经给出了resnet50的结构了,其与resnet34大同小异,如何用c2-c5构造p_i是retinanet的一个特点。特别地,在retinanet中新增了p6和p7,原文解释假如p6和p7就是为了让模型更好地检测大物体,因为感受野大,而不用p2的原因是p2的feature map太大导致计算量太大。

所以如果想检测小物体,理论上有两种方法,一种是加入p2然后去掉p6和p7,但是这个代价是引入了128*128的feature map,这样在p2这一层生成的anchor数目是128*128*9=147456,有点过错了,算起来很慢的。另一种方法就是在设置anchor的base size和ratios还有scales让anchor尽量小一点。

 

 


推荐阅读
  • 对于众多创业公司而言,选择小程序或小视频的发展方向至关重要。本文将深入分析小程序和小视频的特点、优势及局限,帮助创业者做出更明智的选择。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • Panabit应用层流量管理解决方案
    Panabit是一款国内领先的应用层流量管理解决方案,提供高度开放且免费的专业服务,尤其擅长P2P应用的精准识别与高效控制。截至2009年3月25日,该系统已实现对多种网络应用的全面支持,有效提升了网络资源的利用效率和安全性。 ... [详细]
  • CSWS_E_ROB深度估计方法
    论文链接:https:arxiv.orgpdf1708.02287.pdf正文翻译概述……首先,我们把深度估计看做一种多类别的密集标记任务,然后与基于公式的 ... [详细]
  • 对于初学者而言,搭建一个高效稳定的 Python 开发环境是入门的关键一步。本文将详细介绍如何利用 Anaconda 和 Jupyter Notebook 来构建一个既易于管理又功能强大的开发环境。 ... [详细]
  • 2023年,Android开发前景如何?25岁还能转行吗?
    近期,关于Android开发行业的讨论在多个平台上热度不减,许多人担忧其未来发展。本文将探讨当前Android开发市场的现状、薪资水平及职业选择建议。 ... [详细]
  • 本文将深入探讨 Unreal Engine 4 (UE4) 中的距离场技术,包括其原理、实现细节以及在渲染中的应用。距离场技术在现代游戏引擎中用于提高光照和阴影的效果,尤其是在处理复杂几何形状时。文章将结合具体代码示例,帮助读者更好地理解和应用这一技术。 ... [详细]
  • 开发笔记:树的浅析与实现 ... [详细]
  • 本文详细介绍了 Java 网站开发的相关资源和步骤,包括常用网站、开发环境和框架选择。 ... [详细]
  • Visual Studio 2019 安装指南
    作为一名拥有三年经验的程序员,由于长期专注于C语言,我意识到自己的技术栈过于单一。在转型为Android驱动开发工程师后,这种局限性更加明显。本文将介绍如何安装Visual Studio 2019,并配置C++开发环境,以帮助读者拓宽技术视野。 ... [详细]
  • 专业人士如何做自媒体 ... [详细]
  • 三角测量计算三维坐标的代码_双目三维重建——层次化重建思考
    双目三维重建——层次化重建思考FesianXu2020.7.22atANTFINANCIALintern前言本文是笔者阅读[1]第10章内容的笔记,本文从宏观的角度阐 ... [详细]
  • 浏览器作为我们日常不可或缺的软件工具,其背后的运作机制却鲜为人知。本文将深入探讨浏览器内核及其版本的演变历程,帮助读者更好地理解这一关键技术组件,揭示其内部运作的奥秘。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 负载均衡基础概念与技术解析
    随着互联网应用的不断扩展,用户流量激增,业务复杂度显著提升,单一服务器已难以应对日益增长的负载需求。负载均衡技术应运而生,通过将请求合理分配到多个服务器,有效提高系统的可用性和响应速度。本文将深入探讨负载均衡的基本概念和技术原理,分析其在现代互联网架构中的重要性及应用场景。 ... [详细]
author-avatar
王琰杰昔凛
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有