本文实例为大家分享了tensorflow使用CNN分析mnist手写体数字数据集,供大家参考,具体内容如下
import tensorflow as tf import numpy as np import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels #把上述trX和teX的形状变为[-1,28,28,1],-1表示不考虑输入图片的数量,28×28是图片的长和宽的像素数, # 1是通道(channel)数量,因为MNIST的图片是黑白的,所以通道是1,如果是RGB彩色图像,通道是3。 trX = trX.reshape(-1, 28, 28, 1) # 28x28x1 input img teX = teX.reshape(-1, 28, 28, 1) # 28x28x1 input img X = tf.placeholder("float", [None, 28, 28, 1]) Y = tf.placeholder("float", [None, 10]) #初始化权重与定义网络结构。 # 这里,我们将要构建一个拥有3个卷积层和3个池化层,随后接1个全连接层和1个输出层的卷积神经网络 def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01)) w = init_weights([3, 3, 1, 32]) # patch大小为3×3,输入维度为1,输出维度为32 w2 = init_weights([3, 3, 32, 64]) # patch大小为3×3,输入维度为32,输出维度为64 w3 = init_weights([3, 3, 64, 128]) # patch大小为3×3,输入维度为64,输出维度为128 w4 = init_weights([128 * 4 * 4, 625]) # 全连接层,输入维度为 128 × 4 × 4,是上一层的输出数据又三维的转变成一维, 输出维度为625 w_o = init_weights([625, 10]) # 输出层,输入维度为 625, 输出维度为10,代表10类(labels) # 神经网络模型的构建函数,传入以下参数 # X:输入数据 # w:每一层的权重 # p_keep_conv,p_keep_hidden:dropout要保留的神经元比例 def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden): # 第一组卷积层及池化层,最后dropout一些神经元 l1a = tf.nn.relu(tf.nn.conv2d(X, w, strides=[1, 1, 1, 1], padding='SAME')) # l1a shape=(?, 28, 28, 32) l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # l1 shape=(?, 14, 14, 32) l1 = tf.nn.dropout(l1, p_keep_conv) # 第二组卷积层及池化层,最后dropout一些神经元 l2a = tf.nn.relu(tf.nn.conv2d(l1, w2, strides=[1, 1, 1, 1], padding='SAME')) # l2a shape=(?, 14, 14, 64) l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # l2 shape=(?, 7, 7, 64) l2 = tf.nn.dropout(l2, p_keep_conv) # 第三组卷积层及池化层,最后dropout一些神经元 l3a = tf.nn.relu(tf.nn.conv2d(l2, w3, strides=[1, 1, 1, 1], padding='SAME')) # l3a shape=(?, 7, 7, 128) l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # l3 shape=(?, 4, 4, 128) l3 = tf.reshape(l3, [-1, w4.get_shape().as_list()[0]]) # reshape to (?, 2048) l3 = tf.nn.dropout(l3, p_keep_conv) # 全连接层,最后dropout一些神经元 l4 = tf.nn.relu(tf.matmul(l3, w4)) l4 = tf.nn.dropout(l4, p_keep_hidden) # 输出层 pyx = tf.matmul(l4, w_o) return pyx #返回预测值 #我们定义dropout的占位符——keep_conv,它表示在一层中有多少比例的神经元被保留下来。生成网络模型,得到预测值 p_keep_cOnv= tf.placeholder("float") p_keep_hidden = tf.placeholder("float") py_x = model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden) #得到预测值 #定义损失函数,这里我们仍然采用tf.nn.softmax_cross_entropy_with_logits来比较预测值和真实值的差异,并做均值处理; # 定义训练的操作(train_op),采用实现RMSProp算法的优化器tf.train.RMSPropOptimizer,学习率为0.001,衰减值为0.9,使损失最小; # 定义预测的操作(predict_op) cost = tf.reduce_mean(tf.nn. softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost) predict_op = tf.argmax(py_x, 1) #定义训练时的批次大小和评估时的批次大小 batch_size = 128 test_size = 256 #在一个会话中启动图,开始训练和评估 # Launch the graph in a session with tf.Session() as sess: # you need to initialize all variables tf. global_variables_initializer().run() for i in range(100): training_batch = zip(range(0, len(trX), batch_size), range(batch_size, len(trX)+1, batch_size)) for start, end in training_batch: sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end], p_keep_conv: 0.8, p_keep_hidden: 0.5}) test_indices = np.arange(len(teX)) # Get A Test Batch np.random.shuffle(test_indices) test_indices = test_indices[0:test_size] print(i, np.mean(np.argmax(teY[test_indices], axis=1) == sess.run(predict_op, feed_dict={X: teX[test_indices], p_keep_conv: 1.0, p_keep_hidden: 1.0})))
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。