热门标签 | HotTags
当前位置:  开发笔记 > 数据库 > 正文

sqlserver索引的一些总结

如果说要对数据库进行优化,我们主要可以通过以下五种方法,对数据库系统进行优化
1.1.1 摘要
如果说要对数据库进行优化,我们主要可以通过以下五种方法,对数据库系统进行优化。

1. 计算机硬件调优
2. 应用程序调优
3. 数据库索引优化
4. SQL语句优化
5. 事务处理调优

在本篇博文中,我们将想大家讲述数据库中索引类型和使用场合,本文以SQL Server为例,对于其他技术平台的朋友也是有参考价值的,只要替换相对应的代码就行了!

索引使数据库引擎执行速度更快,有针对性的数据检索,而不是简单地整表扫描(Full table scan)。

为了使用有效的索引,我们必须对索引的构成有所了解,而且我们知道在数据表中添加索引必然需要创建和维护索引表,所以我们要全局地衡量添加索引是否能提高数据库系统的查询性能。

在物理层面上,数据库有数据文件组成,而这些数据文件可以组成文件组,然后存储在磁盘上。每个文件包含许多区,每个区的大小为64K由八个物理上连续的页组成(一个页8K),我们知道页是SQL Server数据库中的数据存储的基本单位。为数据库中的数据文件(.mdf 或 .ndf)分配的磁盘空间可以从逻辑上划分成页(从0到n连续编号)。

页中存储的类型有:数据,索引和溢出。

文件和文件组
在SQL Server中,通过文件组这个逻辑对象对存放数据的文件进行管理。

1.1.2 正文

在物理层面上,数据库有数据文件组成,而这些数据文件可以组成文件组,然后存储在磁盘上。每个文件包含许多区,每个区的大小为64K由八个物理上连续的页组成(一个页8K),我们知道页是SQL Server数据库中的数据存储的基本单位。为数据库中的数据文件(.mdf 或 .ndf)分配的磁盘空间可以从逻辑上划分成页(从0到n连续编号)。

页中存储的类型有:数据,索引和溢出。

文件和文件组
在SQL Server中,通过文件组这个逻辑对象对存放数据的文件进行管理。

图1数据库文件组织

在顶层是我们的数据库,由于数据库是由一个或多个文件组组成,而文件组是由一个或多个文件组成的​​逻辑组,所以我们可以把文件组分散到不同的磁盘中,使用户数据尽可能跨越多个设备,多个I/O 运转,避免 I/O 竞争,从而均衡I/O负载,克服访问瓶颈。

区和页
如图2所示,文件是由区组成的,而区由八个物理上连续的页组成,由于区的大小为64K,所以每当增加一个区文件就增加64K。

图2文件组成

页中保存的数据类型有:表数据、索引数据、溢出数据、分配映射、页空闲空间、索引分配等,具体如下图所示:

页类型

内容

Data

当 text in row 设置为 ON 时,包含除 text、 ntext、image、nvarchar(max)、varchar(max)、varbinary(max) 和 xml 数据之外的所有数据的数据行。

Index

索引条目。

Text/Image

大型对象数据类型:text 、 ntext、image、nvarchar(max)、varchar(max)、varbinary(max) 和 xml 数据。数据行超过 8 KB 时为可变长度数据类型列:varchar 、nvarchar、varbinary 和 sql_variant

Global Allocation Map、Shared Global Allocation Map

有关区是否分配的信息。

Page Free Space

有关页分配和页的可用空间的信息。

Index Allocation Map

有关每个分配单元中表或索引所使用的区的信息。

Bulk Changed Map

有关每个分配单元中自最后一条 BACKUP LOG 语句之后的大容量操作所修改的区的信息。

Differential Changed Map

有关每个分配单元中自最后一条 BACKUP DATABASE 语句之后更改的区的信息。

表1页中保存的数据类型

在数据页上,数据行紧接着页头(标头)按顺序放置;页头包含标识值,如页码或对象数据的对象ID;数据行持有实际的数据;最后,页的末尾是行偏移表,对于页中的每一行,每个行偏移表都包含一个条目,每个条目记录对应行的第一个字节与页头的距离,行偏移表中的条目的顺序与页中行的顺序相反。

代码如下:


//伪代码
node.prev.next=node.next;
node.next.prev=node.prev;
node.prev=node.next=null;


代码如下:

-----------------------------------------------------------
---- Create T_Pet table in tempdb.
-----------------------------------------------------------
USE tempdb
CREATE TABLE T_Pet
(
animal VARCHAR(20),
[name] VARCHAR(20),
sex CHAR(1),
age INT
)
CREATE UNIQUE CLUSTERED INDEX T_PetonAnimal1_ClterIdx ON T_Pet (animal)

-----------------------------------------------------------
---- Insert data into data table.
-----------------------------------------------------------
代码如下:

DECLARE @i int
SET @i=0
WHILE(@i<1000000)
BEGIN
INSERT INTO T_Pet (
animal,
[name],
sex,
age
)
SELECT [dbo].random_string(11) animal,
[dbo].random_string(11) [name],
'F' sex,
cast(floor(rand()*5) as int) age
SET @i=@i+1
END
INSERT INTO T_Pet VALUES('Aardark', 'Hello', 'F', 1)
INSERT INTO T_Pet VALUES('Cat', 'Kitty', 'F', 2)
INSERT INTO T_Pet VALUES('Horse', 'Ma', 'F', 1)
INSERT INTO T_Pet VALUES('Turtles', 'SiSi', 'F', 4)
INSERT INTO T_Pet VALUES('Dog', 'Tomma', 'F', 2)
INSERT INTO T_Pet VALUES('Donkey', 'YoYo', 'F', 3)

代码如下:

SET STATISTICS PROFILE ON
SET STATISTICS TIME ON

SELECT animal, [name], sex, age
FROM T_Pet
WHERE animal = 'Ifcey'

SET STATISTICS PROFILE OFF
SET STATISTICS TIME OFF

当我们执行完SQL查询计划时,把鼠标指针放到“聚集索引查找”上,这时会出现如下图信息,我们可以查看到一个重要的信息Logical Operation——Clustered Index Seek,SQL查询是直接根据聚集索引获取记录,查询速度最快。

图6查询计划

从下图查询结果,我们发现查询步骤只有2步,首先通过Clustered Index Seek快速地找到索引Ifcey,接着查询索引的叶节点(数据页)获取数据。

查询执行时间:CPU 时间= 0 毫秒,占用时间= 1 毫秒。

图7查询结果

现在我们把表中的索引删除,重新执行查询计划,这时我们可以发现Logical Operation已经变为Table Scan,由于表中有100万行数据,这时查询速度就相当缓慢。 


查询执行时间:CPU 时间= 329 毫秒,占用时间= 182 毫秒。 

代码如下:


-----------------------------------------------------------
---- Create T_Pet table in tempdb with NONCLUSTERED INDEX.
-----------------------------------------------------------
USE tempdb
CREATE TABLE T_Pet
(
animal VARCHAR(20),
[name] VARCHAR(20),
sex CHAR(1),
age INT
)
CREATE UNIQUE NONCLUSTERED INDEX T_PetonAnimal1_NonClterIdx ON T_Pet (animal)


 
代码如下:

SET STATISTICS PROFILE ON
SET STATISTICS TIME ON

SELECT animal, [name], sex, age
FROM T_Pet
WHERE animal = 'Cat'

SET STATISTICS PROFILE OFF
SET STATISTICS TIME OFF

如下图所示,我们发现查询计划的最右边有两个步骤:RID和索引查找。由于这两种查找方式相对于聚集索引查找要慢(Clustered Index Seek)。

 

图11查询计划

首先SQL Server查找索引值,然后根据RID查找数据行,直到找到符合查询条件的结果。

查询执行时间:CPU 时间= 0 毫秒,占用时间= 1 毫秒

图12查询结果

堆表非聚集索引

由于堆是不含聚集索引的表,所以非聚集索引的叶节点将包含指向具体数据行的指针。

以前面的T_Pet表为例,假设T_Pet使用animal列作为非聚集索引,那么它的堆表非聚集索引结构如下图所示:


现在我们创建表employees,然后给该表添加堆表非聚集索引,具体SQL代码如下:

代码如下:

USE tempdb
---- Creates a sample table.
CREATE TABLE employees (
employee_id NUMERIC NOT NULL,
first_name VARCHAR(1000) NOT NULL,
last_name VARCHAR(900) NOT NULL,
date_of_birth DATETIME ,
phone_number VARCHAR(1000) NOT NULL,
junk CHAR(1000) ,
CONSTRAINT employees_pk PRIMARY KEY NONCLUSTERED (employee_id)
);

GO现在我们查找employee_id = 29976的员工信息。
代码如下:

SELECT *
FROM employees
WHERE employee_id = 29976

查询计划如下图所示:


聚集表非聚集索引

当表上存在聚集索引时,任何非聚集索引的叶节点不再是包含指针值,而是包含聚集索引的索引值。

以前面的T_Pet表为例,假设T_Pet使用animal列作为非聚集索引,那么它的索引表非聚集索引结构如下图所示:


接下来我们修改之前的employees表,首先我们删除之前的堆表非聚集索引,然后增加索引表的非聚集索引,具体SQL代码如下:

代码如下:

ALTER TABLE employees
DROP CONSTRAINT employees_pk

ALTER TABLE employees
ADD CONSTRAINT employees_pk PRIMARY KEY CLUSTERED (employee_id)
GO

SELECT * FROM employees
WHERE employee_id=29976

代码如下:


-----------------------------------------------------------
---- Index Usefulness sample
-----------------------------------------------------------

CREATE TABLE testIndex
(
testIndex int identity(1,1) constraint PKtestIndex primary key,
bitValue bit,
filler char(2000) not null default (replicate('A',2000))
)

CREATE INDEX XtestIndex_bitValue on testIndex(bitValue)
GO

INSERT INTO testIndex(bitValue)
VALUES (0)
GO 20000 --runs current batch 20000 times.

INSERT INTO testIndex(bitValue)
VALUES (1)
GO 10 --puts 10 rows into table with value 1

接着我们查询表中bitValue = 0的数据行,而且表中bitValue = 0的数据有2000行。
代码如下:

SELECT *
FROM testIndex
WHERE bitValue = 0

代码如下:

UPDATE STATISTICS dbo.testIndex
DBCC SHOW_STATISTICS('dbo.testIndex', 'XtestIndex_bitValue')
WITH HISTOGRAM

代码如下:

-- =============================================
-- Author: JKhuang
-- Create date: 04/20/2012
-- Description: Create sample for Clustered and
-- Nonclustered index.
-- =============================================

-----------------------------------------------------------
---- Create T_Pet table in tempdb with NONCLUSTERED INDEX.
-----------------------------------------------------------
USE tempdb
CREATE TABLE T_Pet
(
animal VARCHAR(20),
[name] VARCHAR(20),
sex CHAR(1),
age INT
)
CREATE UNIQUE NONCLUSTERED INDEX T_PetonAnimal1_NonClterIdx ON T_Pet (animal)
CREATE UNIQUE CLUSTERED INDEX T_PetonAnimal1_ClterIdx ON T_Pet (animal)
-----------------------------------------------------------
---- Insert data into data table.
-----------------------------------------------------------
DECLARE @i int
SET @i=0
WHILE(@i<1000000)
BEGIN
INSERT INTO T_Pet (
animal,
[name],
sex,
age
)
SELECT [dbo].random_string(11) animal,
[dbo].random_string(11) [name],
'F' sex,
cast(floor(rand()*5) as int) age
SET @i=@i+1
END
INSERT INTO T_Pet VALUES('Aardark', 'Hello', 'F', 1)
INSERT INTO T_Pet VALUES('Cat', 'Kitty', 'F', 2)
INSERT INTO T_Pet VALUES('Horse', 'Ma', 'F', 1)
INSERT INTO T_Pet VALUES('Turtles', 'SiSi', 'F', 4)
INSERT INTO T_Pet VALUES('Dog', 'Tomma', 'F', 2)
INSERT INTO T_Pet VALUES('Donkey', 'YoYo', 'F', 3)

SET STATISTICS PROFILE ON
SET STATISTICS TIME ON
SELECT animal, [name], sex, age
FROM T_Pet
WHERE animal = 'Cat'
SET STATISTICS PROFILE OFF
SET STATISTICS TIME OFF

-----------------------------------------------------------
---- Create employees table in tempdb.
-----------------------------------------------------------
CREATE TABLE employees (

employee_id NUMERIC NOT NULL,
first_name VARCHAR(1000) NOT NULL,
last_name VARCHAR(900) NOT NULL,
date_of_birth DATETIME ,
phone_number VARCHAR(1000) NOT NULL,
junk CHAR(1000) ,
--PK constraint defaults to clustered
CONSTRAINT employees_pk PRIMARY KEY (employee_id)
);
GO

-----------------------------------------------------------
---- Insert data into data table.
-----------------------------------------------------------
CREATE VIEW rand_helper AS SELECT RND=RAND();
GO
---- Generates random string function.
CREATE FUNCTION random_string (@maxlen int) RETURNS VARCHAR(255)
AS BEGIN
DECLARE @rv VARCHAR(255)
DECLARE @loop int
DECLARE @len int
SET @len = (SELECT CAST(rnd * (@maxlen-3) AS INT) +3
FROM rand_helper)
SET @rv = ''
SET @loop = 0
WHILE @loop <@len BEGIN
SET @rv = @rv
+ CHAR(CAST((SELECT rnd
FROM rand_helper) * 26 AS INT )+97)
IF @loop = 0 BEGIN
SET @rv = UPPER(@rv)
END
SET @loop = @loop +1;
END
RETURN @rv
END
GO
---- Generates random date function.
CREATE FUNCTION random_date (@mindaysago int, @maxdaysago int)
RETURNS VARCHAR(255)
AS BEGIN
DECLARE @rv datetime
SET @rv = (SELECT GetDate()
- rnd * (@maxdaysago-@mindaysago)
- @mindaysago
FROM rand_helper)
RETURN @rv
END
GO
---- Generates random int function.
CREATE FUNCTION random_int (@min int, @max int) RETURNS INT
AS BEGIN
DECLARE @rv INT
SET @rv = (SELECT rnd * (@max) + @min
FROM rand_helper)
RETURN @rv
END
GO
---- Inserts data into employees table.
WITH generator (n) as
(
select 1
union all
select n + 1 from generator
where N <30000
)
INSERT INTO employees (employee_id
, first_name, last_name
, date_of_birth, phone_number, junk)
select n employee_id
, [dbo].random_string(11) first_name
, [dbo].random_string(11) last_name
, [dbo].random_date(20*365, 60*365) dob
, 'N/A' phone
, 'junk' junk
from generator
OPTION (MAXRECURSION 30000)
-----------------------------------------------------------
---- Index Usefulness sample
-----------------------------------------------------------
CREATE TABLE testIndex
(
testIndex int identity(1,1) constraint PKtestIndex primary key,
bitValue bit,
filler char(2000) not null default (replicate('A',2000))
)
CREATE INDEX XtestIndex_bitValue on testIndex(bitValue)
GO
INSERT INTO testIndex(bitValue)
VALUES (0)
GO 20000 --runs current batch 20000 times.
INSERT INTO testIndex(bitValue)
VALUES (1)
GO 10 --puts 10 rows into table with value 1
SELECT filler
FROM testIndex
WHERE bitValue = 1
UPDATE STATISTICS dbo.testIndex
DBCC SHOW_STATISTICS('dbo.testIndex', 'XtestIndex_bitValue')
WITH HISTOGRAM

推荐阅读
author-avatar
qingheqianyenft
这个家伙很懒,什么也没留下!
Tags | 热门标签
RankList | 热门文章
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有