热门标签 | HotTags
当前位置:  开发笔记 > 程序员 > 正文

snake模型

转自:https:blog.csdn.netcaoniyadeniniangarticledetails77803002一、曲线演化理论假设CC(p)是一条光滑封闭

转自:https://blog.csdn.net/caoniyadeniniang/article/details/77803002

一、曲线演化理论

   假设C=C(p)是一条光滑封闭的曲线,P是任意的参数化变量,设K表示曲 率,T表示切线,N表示法线,则有如下关系存在:

                                                                  

                                                                              


因为T和N是互相垂直的(如图所示),所以平面上任何曲线都可以用曲 线上任何一点的T和N的线性组合来表示。在这里引入时间变量t,则曲线随时 间t的演化方程可用如下偏微分方程来表达:

其中,切线方向的速度仅改变曲线的参数化,只有法向 的速度才改变的曲线地 形状(这句话百思不得琪姐,你们自己悟去吧)。仅考虑曲线地形状改变的话,上述方程可以改写为

其中F是曲线地速度函数,N是法向量方向,如下图箭头所示,方程的意义即为曲线上个点沿着箭头方向以速度F运动。从而导致曲线形状发生变化。


二、snake 模型
   snake模型是基于参数的模型,轮廓的模型为C(s),s为参数。snake模型与水平集模型都是基于能量的方法,其思想是以轮廓为参数构造能量,使轮廓在与目标重合的时候能量最小,不重合的时候始终大于零。通过最小化能量方程,即可求出目标的轮廓.
以下图为例,红色线是初始轮廓,绿色线为轮廓的法向量N,带分割的区域为黑色三角形。

则我们对每个点构造能量如下所示,其中第一项为轮廓点的斜率的平方,第二项为轮廓点二阶导数的平方,第三项为轮廓点处的的图像梯度。两个参数均大于0

这样,当轮廓处于无论处于目标的内部还是外部,其能量总是大于0,只有当两者重合时,能量才会最小。我们可以通过最小化包含曲线方程C的方程,求得能量最小化时曲线C的方程,即为待求目标的轮廓。
snake模型的能量分为内部能量与外部能量,内部能量即为曲线的一阶导数与二阶导数的平方项,用于控制轮廓的平滑度(曲线不平滑会使倒数项增大,造成内部能量增大。最小化能量则要求曲线尽量平滑,内部能量尽可能小)。外部能量通常为轮廓处的图像梯度,用于将轮廓向目标出牵引。如上图所示,当轮廓完全位于目标的外部或内不是,轮廓处的图像梯度均为0,只有在目标的轮廓出会发生梯度的突变。最小化能量要求轮廓尽可能与目标的轮廓重合,此时外部能量想最小。下面对snake模型进行推导
其中 曲线表示为V(s),s为参数 vs, vss 分别为轮廓的一阶导数与二级倒数。
轮廓的总能量为关于v,vs,vss的泛函。

带人得:


--------------------- 
作者:林中漫 
来源:CSDN 
原文:https://blog.csdn.net/caoniyadeniniang/article/details/77803002 
版权声明:本文为博主原创文章,转载请附上博文链接!


推荐阅读
author-avatar
时刻要有危机感01
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有