热门标签 | HotTags
当前位置:  开发笔记 > 数据库 > 正文

OCP知识点讲解之队列、资源与锁-mysql教程

一、队列与共享资源共享资源可以被多个会话、进程同时访问,因此它的访问需要保护。Oracle中,除了PGA,所有的东西(包括内存、磁盘、CPU、表、索引、事务等等,

一、队列与共享资源共享资源可以被多个会话、进程同时访问,因此它的访问需要保护。Oracle中,除了PGA,所有的东西(包括内存、磁盘、CPU、表、索引、事务等等,

一、队列与共享资源

共享资源可以被多个会话、进程同时访问,因此它的访问需要保护。Oracle中,除了PGA,所有的东西(包括内存、磁盘、CPU、表、索引、事务等等,种类太多,网站空间,一概用东西两字来代表)都是共享资源。多个进程或会话对共享资源操作时,就需要排队。这里所需要排的队就是队列(Enqueue)。访问不同的共享资源,需要排不同的队。可以这样说,有多少种队列,就有多少种需要保护的共享资源。队列的名字一般是两个字节构成,如TM,TX,JQ,……。具体所有队列的种类、名字,参见V$LOCK视图介绍中的附表。


二、队列标识

我们以TM为例,它是DML队列锁。在对表作DML操作时,需要先在此排队,正式点的说法是:需要先获得TM队列锁。TM也被称作表锁,因为它主要是在对表作操作是获得的。如果数据库中有1000个表,针对这一千个表,并非只有一个队列,要是这样的话也不太合理。1000个表,就应该有1000个TM队列,这样才附合常理。如果一千个队列都叫TM,将来操作时不好区分,因此,需要为这一千个TM队列分别名命,这个名字,也被称为队列标识。TM队列的命名格式为:TM-OID-0。其中OID是Object ID,即对象ID。最后一部分一般都是0。假如AA表的OID是6636,它的队列标识就是TM-6636-0。

每种队列的命名格式各不相同,总的来说是“队列名-ID1-ID2”,ID1和ID2分别是两个参数,对于TM队列来说,ID1是OID,ID2为0。


三、资源结构

继续我们上面的假设,如数据库中有一千个表,这就要对应一千个TM队列。但只有当操作到哪个表了,才会为它建立相关的队列信息。比如会话发布了对AA表的更新操作,需要在SGA中为AA建立相关的TM队列信息。这些相关AA的TM信息,也被称为“资源结构”(KSQRS,KSQ是内核服务队列的简写,RS是Resource Structure的简写,即资源结构)。每一个资源结构维持一个所有者、等待者和转换者的列表。如下图:

资源结构前的即是队列标识,也可以作为资源结构标识(资源标识)。

每一个所有者、等待者和转换者有一个锁结构(Ksqlk),简单点说每一个所有者、等待者和转换者有一个链表,此链表由会话、锁模式等信息构成,网站空间,具体描述了什么会话以什么模式获得此资源结构。具体如下:

1)如果会话获得锁,锁结构将在所有者列表上

2)如果会话正在等待获得锁,锁结构将在等待者列表上

3)如果锁已被获得,但会话正在等待它被转换到一种不同的模式,锁结构将在转换者列表上

所有资源结构组成一个资源表,资源表和资源结构上的锁都被分配在SGA中。资源表中总的行数由初始化参数ENQUEUE_RESOURCES决定,且资源表中的行可以在X$KSQRS中被看到。正在被使用的将在V$RESOURCE中显示。还可以在v$resource_limit中看到资源结构数量的限制和使用情况:

sid=9 pid=10> select * from v$resource_limit where resource_name = 'enqueue_resources';

RESOURCE_NAME CURRENT_UTILIZATION MAX_UTILIZATION INITIAL_ALLOCATION LIMIT_VALUE

------------------------------ ------------------- --------------- -------------------- -------------

enqueue_resources 32 32 968 UNLIMITED

可以看到,当前使用了32个资源结构,最多时使用了32个资源结构,初始化参数中分配了968个资源结构。最多使用是UNLIMITED,没有限制。由于Oracle 9i采用的算法,我们在X$KSQRS中看到的总行数并不是968,而是992。为确保重用,资源表中未用的资源结构被放置在一个连接列表,称为:Resource Free List。我们可以发布一些更新声明,不要提交,这样占用的TM、TX资源结构一直不会释放。观察X$KSQRS,TM资源结构的占用增多,但视图的总行数不变,还是992。新增的TM、TX资源结构占用了其他已经释放的资源结构。


四、资源结构哈希表

为了在资源表中快速找到某一资源结构,Oracle当然还是要使用HASH算法。Oracle根据资源标识计算HASH值。当然,和Library cache一样,资源表中已被占用的资源结构的HASH值构成了一个个HASH Buckut。

上图就是HASH Bucket和资源结构的图,可以看到和Library cache中的很像。HASH算法吗,所有的HASH算法都会有很多共同点。从上图中可以看到,想访问Hash Bucket,需要Enqueue hash chain闩,它需要保护上图中的HASH表,和每个Hash Bucket后的Hash链。它的数量由隐含参数_enqueue_hash_chain_latches控制。Enqueue hash chain闩类似于Buffer cache chain闩。它们都是一个闩要管理多个哈希桶,不过Enqueue hash chain更特殊,在单CPU环境中,只有一个,却要管理所有的哈希桶,这是因为队列的争用,毕竞比Buffer要小的多。

Oracle中所有关于HASH的算法,都要有HASH表、HASH链和保护HASH链的闩,网站空间,HASH表不需要保护,这是因为HASH表是大小固定的数组。每一个数组元素就是一个Hash Bucket。每个哈希桶的哈希值也都是事先定好的。因此不存在对哈希桶的更改,如插入一个哈希桶、修改一个哈希桶的哈希值或删除一个未使用的哈希桶等等,这些操作都是不存在的。因此,既然不会有修改操作,哈希表就不需保护。需要保护的是每个哈希桶后的链。每个桶后的链中,都可以挂多个对象,我们可能向链上添加或删除对象,既然有修改,就需要保护。

队列资源Hash表的长度由_enqueue_hash控制,其始值来源于SESSION参数,初始是375。我们的资源表共有992行,而哈希桶只有375个,这必然会有多个资源结构排在某一个哈希桶后面。如果曾经增加过ENQUEUE_RESOURCES的值,也就是说,资源结构比系统默认的还要更多一些,但控制哈希表长度的_enqueue_hash参数值如果不跟着增加。这就意味着每个哈希桶下要挂接更多的资源结构,这有可能因起Enqueue hash chain闩的竞争。如何观察闩的使用情况这是下一章节的内容,这里就不多说了。_enqueue_hash的初始值是根据Sessions参数来定的,计算公式如下:((sessions-10)*2)+55,默认 ((170-10)*2)+55,正好等于375,它并不随ENQUEUE_RESOURCES的增加而增加。

队列、资源结构和锁结构的关系如上图。上图是分别在两个会话中发布如下声明后的结果:

在会话10:sid=10 pid=11> insert into a1 values(1,1,1);

已创建 1 行。

在会话12:sid=12 pid=12> insert into a1 values(2,2,2);

已创建 1 行。

查看哈希表视图:

sid=9 pid=10> select * from v$resource where type ='TM';

ADDR TY ID1 ID2

-------- -- ---------- ----------

7B6D5C40 TM 6657 0

可以看到,有一个TM队列,地址是7B6D5C40,对象ID是6657,这个正是A1表。

查看V$LOCK视图:

sid=13 pid=13> select * from v$lock where sid>=8;

ADDR KADDR SID TY ID1 ID2 LMODE REQUEST CTIME BLOCK

-------- -------- ---------- -- ---------- ---------- ---------- ---------- ---------- ----------

推荐阅读
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • SQL中UPDATE SET FROM语句的使用方法及应用场景
    本文详细介绍了SQL中UPDATE SET FROM语句的使用方法,通过具体示例展示了如何利用该语句高效地更新多表关联数据。适合数据库管理员和开发人员参考。 ... [详细]
  • 计算机网络复习:第五章 网络层控制平面
    本文探讨了网络层的控制平面,包括转发和路由选择的基本原理。转发在数据平面上实现,通过配置路由器中的转发表完成;而路由选择则在控制平面上进行,涉及路由器中路由表的配置与更新。此外,文章还介绍了ICMP协议、两种控制平面的实现方法、路由选择算法及其分类等内容。 ... [详细]
  • 本文将介绍如何使用 Go 语言编写和运行一个简单的“Hello, World!”程序。内容涵盖开发环境配置、代码结构解析及执行步骤。 ... [详细]
  • 线性Kalman滤波器在多自由度车辆悬架主动控制中的应用研究
    本文探讨了线性Kalman滤波器(LKF)在不同自由度(2、4、7)的车辆悬架系统中进行主动控制的应用。通过详细的仿真分析,展示了LKF在提升悬架性能方面的潜力,并总结了调参过程中的关键要点。 ... [详细]
  • 本文探讨了Hive中内部表和外部表的区别及其在HDFS上的路径映射,详细解释了两者的创建、加载及删除操作,并提供了查看表详细信息的方法。通过对比这两种表类型,帮助读者理解如何更好地管理和保护数据。 ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
author-avatar
爱他让我心痛_830
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有