热门标签 | HotTags
当前位置:  开发笔记 > 开发工具 > 正文

pytorch数据处理:定义自己的数据集合实例

今天小编就为大家分享一篇pytorch数据处理:定义自己的数据集合实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

数据处理

版本1

#数据处理
import os
import torch
from torch.utils import data
from PIL import Image
import numpy as np

#定义自己的数据集合
class DogCat(data.Dataset):

  def __init__(self,root):
    #所有图片的绝对路径
    imgs=os.listdir(root)

    self.imgs=[os.path.join(root,k) for k in imgs]

  def __getitem__(self, index):
    img_path=self.imgs[index]
    #dog-> 1 cat ->0
    label=1 if 'dog' in img_path.split('/')[-1] else 0
    pil_img=Image.open(img_path)
    array=np.asarray(pil_img)
    data=torch.from_numpy(array)
    return data,label

  def __len__(self):
    return len(self.imgs)

dataSet=DogCat('./data/dogcat')

print(dataSet[0])

输出:

( 
( 0 ,.,.) = 
215 203 191 
206 194 182 
211 199 187 
⋮ 
200 191 186 
201 192 187 
201 192 187

( 1 ,.,.) = 
215 203 191 
208 196 184 
213 201 189 
⋮ 
198 189 184 
200 191 186 
201 192 187

( 2 ,.,.) = 
215 201 188 
209 195 182 
214 200 187 
⋮ 
200 191 186 
202 193 188 
204 195 190 
…

(399,.,.) = 
72 90 32 
88 106 48 
38 56 0 
⋮ 
158 161 106 
87 85 36 
105 98 52 
[torch.ByteTensor of size 400x300x3] 
, 1)

上面的数据处理有下面的问题:

1.返回的样本的形状大小不一致,每一张图片的大小不一样。这对于需要batch训练的神经网络来说很不友好。

2. 返回的数据样本数值很大,没有归一化【-1,1】

对于上面的问题,pytorch torchvision 是一个视觉化的工具包,提供了很多的图像处理的工具,其中transforms模块提供了对PIL image对象和Tensor对象的常用操作。

对PIL Image常见的操作如下;

Resize 调整图片的尺寸,长宽比保持不变

CentorCrop ,RandomCrop,RandomSizeCrop 裁剪图片

Pad 填充

ToTensor 将PIL Image 转换为Tensor,会自动将[0,255] 归一化至[0,1]

对Tensor 的操作如下:

Normalize 标准化,即减均值,除以标准差

ToPILImage 将Tensor转换为 PIL Image对象

版本2

#数据处理
import os
import torch
from torch.utils import data
from PIL import Image
import numpy as np
from torchvision import transforms

transform=transforms.Compose([
  transforms.Resize(224), #缩放图片,保持长宽比不变,最短边的长为224像素,
  transforms.CenterCrop(224), #从中间切出 224*224的图片
  transforms.ToTensor(), #将图片转换为Tensor,归一化至[0,1]
  transforms.Normalize(mean=[.5,.5,.5],std=[.5,.5,.5]) #标准化至[-1,1]
])

#定义自己的数据集合
class DogCat(data.Dataset):

  def __init__(self,root):
    #所有图片的绝对路径
    imgs=os.listdir(root)

    self.imgs=[os.path.join(root,k) for k in imgs]
    self.transforms=transform

  def __getitem__(self, index):
    img_path=self.imgs[index]
    #dog-> 1 cat ->0
    label=1 if 'dog' in img_path.split('/')[-1] else 0
    pil_img=Image.open(img_path)
    if self.transforms:
      data=self.transforms(pil_img)
    else:
      pil_img=np.asarray(pil_img)
      data=torch.from_numpy(pil_img)
    return data,label

  def __len__(self):
    return len(self.imgs)

dataSet=DogCat('./data/dogcat')

print(dataSet[0])

输出:

( 
( 0 ,.,.) = 
-0.1765 -0.2627 -0.1686 … -0.0824 -0.2000 -0.2627 
-0.2392 -0.3098 -0.3176 … -0.2863 -0.2078 -0.1765 
-0.3176 -0.2392 -0.2784 … -0.2941 -0.1137 -0.0118 
… ⋱ … 
-0.7569 -0.5922 -0.1529 … -0.8510 -0.8196 -0.8353 
-0.8353 -0.7255 -0.3255 … -0.8275 -0.8196 -0.8588 
-0.9373 -0.7647 -0.4510 … -0.8196 -0.8353 -0.8824

( 1 ,.,.) = 
-0.0431 -0.1373 -0.0431 … 0.0118 -0.0980 -0.1529 
-0.0980 -0.1686 -0.1765 … -0.1608 -0.0745 -0.0431 
-0.1686 -0.0902 -0.1373 … -0.1451 0.0431 0.1529 
… ⋱ … 
-0.5529 -0.3804 0.0667 … -0.7961 -0.7725 -0.7961 
-0.6314 -0.5137 -0.1137 … -0.7804 -0.7882 -0.8275 
-0.7490 -0.5608 -0.2392 … -0.7725 -0.8039 -0.8588 
… 
[torch.FloatTensor of size 3x224x224] 
, 1)

项目的github地址:https://github.com/WebLearning17/CommonTool

以上这篇pytorch 数据处理:定义自己的数据集合实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


推荐阅读
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 图神经网络模型综述
    本文综述了图神经网络(Graph Neural Networks, GNN)的发展,从传统的数据存储模型转向图和动态模型,探讨了模型中的显性和隐性结构,并详细介绍了GNN的关键组件及其应用。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 构建基于BERT的中文NL2SQL模型:一个简明的基准
    本文探讨了将自然语言转换为SQL语句(NL2SQL)的任务,这是人工智能领域中一项非常实用的研究方向。文章介绍了笔者在公司举办的首届中文NL2SQL挑战赛中的实践,该比赛提供了金融和通用领域的表格数据,并标注了对应的自然语言与SQL语句对,旨在训练准确的NL2SQL模型。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 在Win10上利用VS2015构建Caffe2环境
    本文详细介绍如何在Windows 10操作系统上通过Visual Studio 2015编译Caffe2深度学习框架的过程。包括必要的软件安装、环境配置以及常见问题的解决方法。 ... [详细]
  • 利用Java与Tesseract-OCR实现数字识别
    本文深入探讨了如何利用Java语言结合Tesseract-OCR技术来实现图像中的数字识别功能,旨在为开发者提供详细的指导和实践案例。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 如何用GPU服务器运行Python
    如何用GPU服务器运行Python-目录前言一、服务器登录1.1下载安装putty1.2putty远程登录 1.3查看GPU、显卡常用命令1.4Linux常用命令二、 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 尤洋:夸父AI系统——大规模并行训练的深度学习解决方案
    自从AlexNet等模型在计算机视觉领域取得突破以来,深度学习技术迅速发展。近年来,随着BERT等大型模型的广泛应用,AI模型的规模持续扩大,对硬件提出了更高的要求。本文介绍了新加坡国立大学尤洋教授团队开发的夸父AI系统,旨在解决大规模模型训练中的并行计算挑战。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • TWEN-ASR 语音识别入门:运行首个程序
    本文详细介绍了如何使用TWEN-ASR ONE开发板运行第一个语音识别程序,包括开发环境搭建、代码编写、下载和调试等步骤。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
author-avatar
缺少小女人的温柔
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有