热门标签 | HotTags
当前位置:  开发笔记 > 开发工具 > 正文

pytorch快速搭建神经网络_Sequential操作

这篇文章主要介绍了pytorch快速搭建神经网络_Sequential操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

之前用Class类来搭建神经网络

class Neuro_net(torch.nn.Module):
  """神经网络"""
  def __init__(self, n_feature, n_hidden_layer, n_output):
    super(Neuro_net, self).__init__()
    self.hidden_layer = torch.nn.Linear(n_feature, n_hidden_layer)
    self.output_layer = torch.nn.Linear(n_hidden_layer, n_output)

  def forward(self, input):
    hidden_out = torch.relu(self.hidden_layer(input))
    out = self.output_layer(hidden_out)
    return out
  
net = Neuro_net(2, 10, 2)
print(net)

class类图结构:

使用torch.nn.Sequential() 快速搭建神经网络

net = torch.nn.Sequential(
  torch.nn.Linear(2, 10),
  torch.nn.ReLU(),
  torch.nn.Linear(10, 2)
)
print(net)

Sequential图结构

总结:

我们可以发现,使用torch.nn.Sequential会自动加入激励函数, 但是 class类net 中, 激励函数实际上是在 forward() 功能中才被调用的

使用class类中的torch.nn.Module,我们可以根据自己的需求改变传播过程

如果你需要快速构建或者不需要过多的过程,直接使用torch.nn.Sequential吧

补充知识:【PyTorch神经网络】使用Moudle和Sequential搭建神经网络

Module:

init中定义每个神经层的神经元个数,和神经元层数;

forward是继承nn.Moudle中函数,来实现前向反馈(加上激励函数)

# -*- coding: utf-8 -*-
# @Time  : 2019/11/5 10:43
# @Author : Chen
# @File  : neural_network_impl.py
# @Software: PyCharm
 
import torch
import torch.nn.functional as F
 
#data
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2 * torch.rand(x.size())
 
 
#第一种搭建方法:Module
# 其中,init中定义每个神经层的神经元个数,和神经元层数;
# forward是继承nn.Moudle中函数,来实现前向反馈(加上激励函数)
class Net(torch.nn.Module):
  def __init__(self):
    #继承__init__函数
    super(Net, self).__init__()
    #定义每层的形式
    #隐藏层线性输出feature->hidden
    self.hidden = torch.nn.Linear(1, 10)
    #输出层线性输出hidden->output
    self.predict = torch.nn.Linear(10, 1)
 
  #实现所有层的连接关系。正向传播输入值,神经网络分析输出值
  def forward(self, x):
    #x首先在隐藏层经过激励函数的计算
    x = F.relu(self.hidden(x))
    #到输出层给出预测值
    x = self.predict(x)
    return x
 
net = Net()
print(net)
 
print('\n\n')
 
#快速搭建:Sequential
#模板:net2 = torch.nn.Sequential()
 
net2 = torch.nn.Sequential(
  torch.nn.Linear(1, 10),
  torch.nn.ReLU(),
  torch.nn.Linear(10, 1)
)
print(net2)
 

以上这篇pytorch快速搭建神经网络_Sequential操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


推荐阅读
  • 对于初学者而言,搭建一个高效稳定的 Python 开发环境是入门的关键一步。本文将详细介绍如何利用 Anaconda 和 Jupyter Notebook 来构建一个既易于管理又功能强大的开发环境。 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 目录预备知识导包构建数据集神经网络结构训练测试精度可视化计算模型精度损失可视化输出网络结构信息训练神经网络定义参数载入数据载入神经网络结构、损失及优化训练及测试损失、精度可视化qu ... [详细]
  • Vision Transformer (ViT) 和 DETR 深度解析
    本文详细介绍了 Vision Transformer (ViT) 和 DETR 的工作原理,并提供了相关的代码实现和参考资料。通过观看教学视频和阅读博客,对 ViT 的全流程进行了详细的笔记整理,包括代码详解和关键概念的解释。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 本文将深入探讨生成对抗网络(GAN)在计算机视觉领域的应用。作为该领域的经典模型,GAN通过生成器和判别器的对抗训练,能够高效地生成高质量的图像。本文不仅回顾了GAN的基本原理,还将介绍一些最新的进展和技术优化方法,帮助读者全面掌握这一重要工具。 ... [详细]
  • PyTorch 使用问题:解决导入 torch 后 torch.cuda.is_available() 返回 False 的方法
    在配置 PyTorch 时,遇到 `torch.cuda.is_available()` 返回 `False` 的问题。本文总结了多种解决方案,并分享了个人在 PyCharm、Python 和 Anaconda3 环境下成功配置 CUDA 的经验,以帮助读者避免常见错误并顺利使用 GPU 加速。 ... [详细]
  • PyCharm 安装与首个 Python 程序实践
    本文将指导您如何安装 PyCharm,并通过创建一个简单的 'Hello, World' 程序来初步体验这一强大的 Python 集成开发环境。 ... [详细]
  • 深入解析层次聚类算法
    本文详细介绍了层次聚类算法的基本原理,包括其通过构建层次结构来分类样本的特点,以及自底向上(凝聚)和自顶向下(分裂)两种主要的聚类策略。文章还探讨了不同距离度量方法对聚类效果的影响,并提供了具体的参数设置指导。 ... [详细]
  • Django与Python及其他Web框架的对比
    本文详细介绍了Django与其他Python Web框架(如Flask和Tornado)的区别,并探讨了Django的基本使用方法及与其他语言(如PHP)的比较。 ... [详细]
  • 本文介绍了在 Python 3.4 中使用 Pygame 时遇到的导入错误及其解决方案。 ... [详细]
  • 整理于2020年10月下旬:总结过去,展望未来Itistoughtodayandtomorrowwillbetougher.butthedayaftertomorrowisbeau ... [详细]
  • MyBatisCodeHelperPro 2.9.3 最新在线免费激活方法
    MyBatisCodeHelperPro 2.9.3 是一款强大的代码生成工具,适用于多种开发环境。本文将介绍如何在线免费激活该工具,帮助开发者提高工作效率。 ... [详细]
  • 本文介绍了多种常用的开发工具,包括PyCharm、Appium、Jenkins、Postman、Fiddler、Charles、Airtest、Android Studio、Navicat和Typora,并提供了它们的基本使用方法。 ... [详细]
  • 本文介绍了如何在 Python 脚本中规范文件编码,并提供了在不同字符集之间进行转换的方法,特别是在处理中文字符时的注意事项。 ... [详细]
author-avatar
liqiqinai
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有