热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

pythonnetworkx包绘制复杂网络关系图的实现

这篇文章主要介绍了pythonnetworkx包绘制复杂网络关系图的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1. 创建一个图

import networkx as nx
g = nx.Graph()
g.clear() #将图上元素清空

所有的构建复杂网络图的操作基本都围绕这个g来执行。

2. 节点

节点的名字可以是任意数据类型的,添加一个节点是

g.add_node(1)
g.add_node("a")
g.add_node("spam")

添加一组节点,就是提前构建好了一个节点列表,将其一次性加进来,这跟后边加边的操作是具有一致性的。

g.add_nodes_from([2,3])
or 
a = [2,3]
g.add_nodes_from(a)

这里需要值得注意的一点是,对于add_node加一个点来说,字符串是只添加了名字为整个字符串的节点。但是对于

add_nodes_from加一组点来说,字符串表示了添加了每一个字符都代表的多个节点,exp:
g.add_node("spam") #添加了一个名为spam的节点
g.add_nodes_from("spam") #添加了4个节点,名为s,p,a,m
g.nodes() #可以将以上5个节点打印出来看看

加一组从0开始的连续数字的节点

H = nx.path_graph(10)
g.add_nodes_from(H) #将0~9加入了节点
#但请勿使用g.add_node(H)

删除节点

与添加节点同理

g.remove_node(node_name)
g.remove_nodes_from(nodes_list)

3. 边

边是由对应节点的名字的元组组成,加一条边

g.add_edge(1,2)
e = (2,3)
g.add_edge(*e) #直接g.add_edge(e)数据类型不对,*是将元组中的元素取出

加一组边

g.add_edges_from([(1,2),(1,3)])
g.add_edges_from([("a","spam") , ("a",2)])

通过nx.path_graph(n)加一系列连续的边

n = 10
H = nx.path_graph(n)
g.add_edges_from(H.edges()) #添加了0~1,1~2 ... n-2~n-1这样的n-1条连续的边

删除边

同理添加边的操作

g.remove_edge(edge)
g.remove_edges_from(edges_list)

4. 查看图上点和边的信息

g.number_of_nodes() #查看点的数量
g.number_of_edges() #查看边的数量
g.nodes() #返回所有点的信息(list)
g.edges() #返回所有边的信息(list中每个元素是一个tuple)
g.neighbors(1) #所有与1这个点相连的点的信息以列表的形式返回
g[1] #查看所有与1相连的边的属性,格式输出:{0: {}, 2: {}} 表示1和0相连的边没有设置任何属性(也就是{}没有信息),同理1和2相连的边也没有任何属性

method explanation
Graph.has_node(n) Return True if the graph contains the node n.
Graph.__contains__(n) Return True if n is a node, False otherwise.
Graph.has_edge(u, v) Return True if the edge (u,v) is in the graph.
Graph.order() Return the number of nodes in the graph.
Graph.number_of_nodes() Return the number of nodes in the graph.
Graph.__len__() Return the number of nodes.
Graph.degree([nbunch, weight]) Return the degree of a node or nodes.
Graph.degree_iter([nbunch, weight]) Return an iterator for (node, degree).
Graph.size([weight]) Return the number of edges.
Graph.number_of_edges([u, v]) Return the number of edges between two nodes.
Graph.nodes_with_selfloops() Return a list of nodes with self loops.
Graph.selfloop_edges([data, default]) Return a list of selfloop edges.
Graph.number_of_selfloops() Return the number of selfloop edges.

5. 图的属性设置

为图赋予初始属性

g = nx.Graph(day="Monday") 
g.graph # {'day': 'Monday'}

修改图的属性

g.graph['day'] = 'Tuesday'
g.graph # {'day': 'Tuesday'}

6. 点的属性设置

g.add_node('benz', mOney=10000, fuel="1.5L")
print g.node['benz'] # {'fuel': '1.5L', 'money': 10000}
print g.node['benz']['money'] # 10000
print g.nodes(data=True) # data默认false就是不输出属性信息,修改为true,会将节点名字和属性信息一起输出

7. 边的属性设置

通过上文中对g[1]的介绍可知边的属性在{}中显示出来,我们可以根据这个秀改变的属性

g.clear()
n = 10
H = nx.path_graph(n)
g.add_nodes_from(H)
g.add_edges_from(H.edges())
g[1][2]['color'] = 'blue'

g.add_edge(1, 2, weight=4.7)
g.add_edges_from([(3,4),(4,5)], color='red')
g.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
g[1][2]['weight'] = 4.7
g.edge[1][2]['weight'] = 4

8. 不同类型的图(有向图Directed graphs , 重边图 Multigraphs)

Directed graphs

DG = nx.DiGraph()
DG.add_weighted_edges_from([(1,2,0.5), (3,1,0.75), (1,4,0.3)]) # 添加带权值的边
print DG.out_degree(1) # 打印结果:2 表示:找到1的出度
print DG.out_degree(1, weight='weight') # 打印结果:0.8 表示:从1出去的边的权值和,这里权值是以weight属性值作为标准,如果你有一个money属性,那么也可以修改为weight='money',那么结果就是对money求和了
print DG.successors(1) # [2,4] 表示1的后继节点有2和4
print DG.predecessors(1) # [3] 表示只有一个节点3有指向1的连边

Multigraphs

简答从字面上理解就是这种复杂网络图允许你相同节点之间允许出现重边

MG=nx.MultiGraph()
MG.add_weighted_edges_from([(1,2,.5), (1,2,.75), (2,3,.5)])
print MG.degree(weight='weight') # {1: 1.25, 2: 1.75, 3: 0.5}
GG=nx.Graph()
for n,nbrs in MG.adjacency_iter():
 for nbr,edict in nbrs.items():
  minvalue=min([d['weight'] for d in edict.values()])
  GG.add_edge(n,nbr, weight = minvalue)

print nx.shortest_path(GG,1,3) # [1, 2, 3]

9.  图的遍历

g = nx.Graph()
g.add_weighted_edges_from([(1,2,0.125),(1,3,0.75),(2,4,1.2),(3,4,0.375)])
for n,nbrs in g.adjacency_iter(): #n表示每一个起始点,nbrs是一个字典,字典中的每一个元素包含了这个起始点连接的点和这两个点连边对应的属性
 print n, nbrs
 for nbr,eattr in nbrs.items():
  # nbr表示跟n连接的点,eattr表示这两个点连边的属性集合,这里只设置了weight,如果你还设置了color,那么就可以通过eattr['color']访问到对应的color元素
  data=eattr['weight']
  if data<0.5: print('(%d, %d, %.3f)' % (n,nbr,data))

10. 图生成和图上的一些操作

下方的这些操作都是在networkx包内的方法

subgraph(G, nbunch)  - induce subgraph of G on nodes in nbunch
union(G1,G2)    - graph union
disjoint_union(G1,G2) - graph union assuming all nodes are different
cartesian_product(G1,G2) - return Cartesian product graph
compose(G1,G2)   - combine graphs identifying nodes common to both
complement(G)   - graph complement
create_empty_copy(G)  - return an empty copy of the same graph class
convert_to_undirected(G) - return an undirected representation of G
convert_to_directed(G) - return a directed representation of G

11. 图上分析

g = nx.Graph()
g.add_edges_from([(1,2), (1,3)])
g.add_node("spam") 
nx.connected_components(g) # [[1, 2, 3], ['spam']] 表示返回g上的不同连通块
sorted(nx.degree(g).values()) 

通过构建权值图,可以直接快速利用dijkstra_path()接口计算最短路程

>>> G=nx.Graph()
>>> e=[('a','b',0.3),('b','c',0.9),('a','c',0.5),('c','d',1.2)]
>>> G.add_weighted_edges_from(e)
>>> print(nx.dijkstra_path(G,'a','d'))
['a', 'c', 'd']

12. 图的绘制

下面是4种图的构造方法,选择其中一个

nx.draw(g)
nx.draw_random(g) #点随机分布
nx.draw_circular(g) #点的分布形成一个环
nx.draw_spectral(g)

最后将图形表现出来

import matplotlib.pyplot as plt
plt.show()

将图片保存到下来

nx.draw(g)
plt.savefig("path.png")

修改节点颜色,边的颜色

g = nx.cubical_graph()
nx.draw(g, pos=nx.spectral_layout(g), nodecolor='r', edge_color='b')
plt.show()

13. 图形种类的选择

Graph Type NetworkX Class
简单无向图 Graph()
简单有向图 DiGraph()
有自环 Grap(),DiGraph()
有重边 MultiGraph(), MultiDiGraph()

reference:https://networkx.github.io/documentation/networkx-1.10/reference/classes.html

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


推荐阅读
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
  • This document outlines the recommended naming conventions for HTML attributes in Fast Components, focusing on readability and consistency with existing standards. ... [详细]
  • golang常用库:配置文件解析库/管理工具viper使用
    golang常用库:配置文件解析库管理工具-viper使用-一、viper简介viper配置管理解析库,是由大神SteveFrancia开发,他在google领导着golang的 ... [详细]
  • Vue 2 中解决页面刷新和按钮跳转导致导航栏样式失效的问题
    本文介绍了如何通过配置路由的 meta 字段,确保 Vue 2 项目中的导航栏在页面刷新或内部按钮跳转时,始终保持正确的 active 样式。具体实现方法包括设置路由的 meta 属性,并在 HTML 模板中动态绑定类名。 ... [详细]
  • 本文总结了汇编语言中第五至第八章的关键知识点,涵盖间接寻址、指令格式、安全编程空间、逻辑运算指令及数据重复定义等内容。通过详细解析这些内容,帮助读者更好地理解和应用汇编语言的高级特性。 ... [详细]
  • 探讨如何高效使用FastJSON进行JSON数据解析,特别是从复杂嵌套结构中提取特定字段值的方法。 ... [详细]
  • 本文详细介绍了如何使用Maven高效管理多模块项目,涵盖项目结构设计、依赖管理和构建优化等方面。通过具体的实例和配置说明,帮助开发者更好地理解和应用Maven在复杂项目中的优势。 ... [详细]
  • PHP 5.2.5 安装与配置指南
    本文详细介绍了 PHP 5.2.5 的安装和配置步骤,帮助开发者解决常见的环境配置问题,特别是上传图片时遇到的错误。通过本教程,您可以顺利搭建并优化 PHP 运行环境。 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 本文介绍如何使用 Sortable.js 库实现元素的拖拽和位置交换功能。Sortable.js 是一个轻量级、无依赖的 JavaScript 库,支持拖拽排序、动画效果和多种插件扩展。通过简单的配置和事件处理,可以轻松实现复杂的功能。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了如何在 Spring Boot 应用中通过 @PropertySource 注解读取非默认配置文件,包括配置文件的创建、映射类的设计以及确保 Spring 容器能够正确加载这些配置的方法。 ... [详细]
  • 在现代网络环境中,两台计算机之间的文件传输需求日益增长。传统的FTP和SSH方式虽然有效,但其配置复杂、步骤繁琐,难以满足快速且安全的传输需求。本文将介绍一种基于Go语言开发的新一代文件传输工具——Croc,它不仅简化了操作流程,还提供了强大的加密和跨平台支持。 ... [详细]
  • 解决微信电脑版无法刷朋友圈问题:使用安卓远程投屏方案
    在工作期间想要浏览微信和朋友圈却不太方便?虽然微信电脑版目前不支持直接刷朋友圈,但通过远程投屏技术,可以轻松实现在电脑上操作安卓设备的功能。 ... [详细]
  • 从零开始构建完整手机站:Vue CLI 3 实战指南(第一部分)
    本系列教程将引导您使用 Vue CLI 3 构建一个功能齐全的移动应用。我们将深入探讨项目中涉及的每一个知识点,并确保这些内容与实际工作中的需求紧密结合。 ... [详细]
author-avatar
关圣钊
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有