热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

pythonggplot画等值线图,plotnine:Python版的ggplot2作图库

R语言的ggplot2绘图能力超强,python虽有matplotlib,但是语法臃肿,使用复杂,入门极难,s

R语言的ggplot2绘图能力超强,python虽有matplotlib,但是语法臃肿,使用复杂,入门极难,seaborn的出现稍微改善了matplotlib代码量问题,但是定制化程度依然需要借助matplotlib,使用难度依然很大。

而且咱们经管专业学编程语言,一直有一个经久不衰的问题-“学数据分析,到底选择R还是Python”。通过plotnine这个库,你就可以在python世界中体验下R语言的新奇感,体验可视化之美,如果着迷上瘾,再学R也不迟。

plotnine包,可以实现绝大多数ggplot2的绘图功能,两者语法十分相似,R和Python的语法转换成本大大降低。

pip install plotnine

**准备数据**

from plotnine.data import mpg

#dataframe

mpg.head()

![](https://s4.51cto.com/images/blog/202012/30/f0af3e132c908cf373a2ae14fbe4d691.png?x-oss-process=image/watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=)

**快速作图qplot**

我们先直接看最简单好用的快速作图函数qplot(x, y, data)

* 横坐标displ

* 纵坐标cty

* 数据mpg

*

from plotnine import qplot

qplot(x='displ',

y='cty',

data=mpg)

![](https://s4.51cto.com/images/blog/202012/30/bdb79162e800e4ed138fd3e806b98a21.png?x-oss-process=image/watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=)

**ggplot图层**

qplot是快速作图函数,如果想让图更好看,进行私人订制,那么我们需要进行图层设计

首先设置ggplot图层(相当于买了一个高级画布),

* 数据mpg

* 横坐标x轴为displ

* 纵坐标y轴cty

在plotnine中,变量所对应的数据均可通过字段名调用

from plotnine import ggplot, geom_point, aes

ggplot(aes(x='displ', y='cty'), mpg)

![](https://s4.51cto.com/images/blog/202012/30/d1490a014e2c0caf5a39f4a6d612964b.png?x-oss-process=image/watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=)

**图层叠加**

我们可以看到,已经绘制出一个空的ggplot图层,x轴为displ,y轴为cty。

接下来我们给这个图层上加上数据对应的散点,使用geom_point()直接追加在ggplot图层之上即可。

(

ggplot(aes(x='displ', y='cty'), mpg)

geom_point()

)

![](https://s4.51cto.com/images/blog/202012/30/8eca9dbd92b74953cc4dcc5dcb221dde.png?x-oss-process=image/watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=)

**color**

在上图中,散点是没有区分每辆车的气缸数cyl。

在geom_point()中,我们可以按照气缸数cyl分门别类,按照颜色显示出来

(

ggplot(aes(x='displ', y='cty'), mpg)

geom_point(aes(color='cyl'))

)

图片

上图挺好看的,有时候需要绘制的字段是离散型数值,但是上色后可能不够明显,需要声明该字段为离散型。这时候用factor()来告诉plotnine,这个字段是离散型数值

(

ggplot(aes(x='displ', y='cty'), mpg)

geom_point(aes(color='factor(cyl)'))

)

5b3b9783c02ab785c65496e32404cd67.png

size

有时候为了增加可视化显示的维度数,还可以考虑加入点的大小size

(

ggplot(aes(x='displ', y='cty'), mpg)

+ geom_point(aes(size='hwy'))

)

7a0fcdc5c0c010fc7673ec3fa15db6ee.png

梯度色

如果你想自己设置颜色的梯度,可以通过scale_color_gradient设置

from plotnine import scale_color_gradient

(

ggplot(aes(x='displ', y='cty'), mpg)

+ geom_point(aes(color='hwy'))

+ scale_color_gradient(low='blue', high='red')

)

164a73aba67cde8379229b1d75aa35df.png

条形图

plotnine中可绘制的图有很多,刚刚已经讲了散点图,接下来我们看看plotnine中的条形图。

首先准备一下数据

import pandas as pd

df = pd.DataFrame({

'variable': ['gender', 'gender', 'age', 'age', 'age', 'income', 'income', 'income', 'income'],

'category': ['Female', 'Male', '1-24', '25-54', '55+', 'Lo', 'Lo-Med', 'Med', 'High'],

'value': [60, 40, 50, 30, 20, 10, 25, 25, 40],

})

df['variable'] = pd.Categorical(df['variable'], categories=['gender', 'age', 'income'])

df['category'] = pd.Categorical(df['category'], categories=df['category'])

df

44868c12718715ccc8d49c5cb2f52384.png

#调整文本位置

dodge_text = position_dodge(width=0.9) # new

(

ggplot(df, aes(x='variable',

y='value',

fill='category')) #类别填充颜色

+ geom_col(position='dodge',

show_legend=False) # modified

+ geom_text(aes(y=-.5, label='category'), # new

position=dodge_text,

color='gray', #文本颜色

size=8, #字号

angle=30, #文本的角度

va='top')

+ lims(y=(-5, 60)) # new

)

babb3f17d0dd09a9aff54ca45c5c5ecc.png

from plotnine.data import economics_long

economics_long.head()

a26cbbea888d878c804626022074a20b.png

from plotnine import ggplot, aes, geom_line

(

ggplot(economics_long, aes(x='date', y='value01', color='variable'))

+ geom_line()

)

96f30792018eb9b4ca34e4795d972821.png

plotnine目前已经支持绝大多数ggplot2,但是文档方面没有ggplot2全,所以学习plotnine时可以参考ggplot2。



推荐阅读
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • JavaScript 基础语法指南
    本文详细介绍了 JavaScript 的基础语法,包括变量、数据类型、运算符、语句和函数等内容,旨在为初学者提供全面的入门指导。 ... [详细]
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • Python实现斐波那契数列的方法与优化
    本文详细介绍了如何在Python中编写斐波那契数列,并探讨了不同的实现方法及其性能优化。通过递归、迭代和公式法,读者可以了解每种方法的优缺点,并选择最适合自己的实现方式。 ... [详细]
  • 解决TensorFlow CPU版本安装中的依赖问题
    本文记录了在安装CPU版本的TensorFlow过程中遇到的依赖问题及解决方案,特别是numpy版本不匹配和动态链接库(DLL)错误。通过详细的步骤说明和专业建议,帮助读者顺利安装并使用TensorFlow。 ... [详细]
  • 本文详细介绍了如何将 Python 3.6.3 程序转换为 Windows 可执行文件(.exe),并解决了使用 py2exe 和 cx_Freeze 时遇到的问题。推荐使用 PyInstaller 进行打包,提供完整的安装和打包步骤。 ... [详细]
  • 本文介绍了如何利用Python进行批量图片尺寸调整,包括放大和等比例缩放。文中提供了详细的代码示例,并解释了每个步骤的具体实现方法。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 基于Node.js、Express、MongoDB和Socket.io的实时聊天应用开发
    本文详细介绍了使用Node.js、Express、MongoDB和Socket.io构建的实时聊天应用程序。涵盖项目结构、技术栈选择及关键依赖项的配置。 ... [详细]
  • 嵌入式开发环境搭建与文件传输指南
    本文详细介绍了如何为嵌入式应用开发搭建必要的软硬件环境,并提供了通过串口和网线两种方式将文件传输到开发板的具体步骤。适合Linux开发初学者参考。 ... [详细]
  • 深入解析SpringMVC核心组件:DispatcherServlet的工作原理
    本文详细探讨了SpringMVC的核心组件——DispatcherServlet的运作机制,旨在帮助有一定Java和Spring基础的开发人员理解HTTP请求是如何被映射到Controller并执行的。文章将解答以下问题:1. HTTP请求如何映射到Controller;2. Controller是如何被执行的。 ... [详细]
  • InmyapplicationIhaveQGraphicsScenewithpixmapaddedandallisviewedinQGraphicsViewwithsc ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
  • Linux环境下进程间通信:深入解析信号机制
    本文详细探讨了Linux系统中信号的生命周期,从信号生成到处理函数执行完毕的全过程,并介绍了信号编程中的注意事项和常见应用实例。通过分析信号在进程中的注册、注销及处理过程,帮助读者理解如何高效利用信号进行进程间通信。 ... [详细]
  • 智慧城市建设现状及未来趋势
    随着新基建政策的推进及‘十四五’规划的实施,我国正步入以5G、人工智能等先进技术引领的智慧经济新时代。规划强调加速数字化转型,促进数字政府建设,新基建政策亦倡导城市基础设施的全面数字化。本文探讨了智慧城市的发展背景、全球及国内进展、市场规模、架构设计,以及百度、阿里、腾讯、华为等领军企业在该领域的布局策略。 ... [详细]
author-avatar
JUN-围脖
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有