热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python中时间处理_python中的时间处理模块

python中的时间处理python中处理时间的模块有三个,datetime,time,calendar,重点在于梳理出三个模块的设计脉络,

python中的时间处理

python中处理时间的模块有三个,datetime, time, calendar,重点在于梳理出三个模块的设计脉络,便于在需要的时候能够去查找相应的方法。由于calendar模块使用不多未做总结。以下demo均为python3。

1 . 概述

datetime模块主要是用来表示日期的,就是我们常说的年月日时分秒,calendar模块主要是用来表示年月日,是星期几之类的信息,time模块主要侧重点在时分秒,粗略从功能来看,我们可以认为三者是一个互补的关系,各自专注一块。此处还有一个小点需要注意dateutil,弥补了datetime不能处理月份的问题,用法同datetime共同总结。

理论储备

学习time模块前,我们需要先知道几个与时间相关的概

epoch

我们的时间基准点是什么时间?比如我说你身高1.8米,那这个身高是指相对于你站立的地面说的。这个时间基准点就是epoch,在Unix系统中,这个基准点就是1970年1月1日0点整那个时间点

GMT,UTC

上面我们说epoch表示1970年的起始点,那这个1970年又是相对于哪个基准时间呢?一般来说,就是相对于格林尼治时间,也叫做GMT(Greenwich Mean Time)时间,还叫做UTC(Coordinated Universal Time),为啥一个时间基准有两个名字?历史上,先有的GMT,后有的UTC.

UTC是我们现在用的时间标准,GMT是老的时间计量标准。UTC是根据原子钟来计算时间,而GMT是根据地球的自转和公转来计算时间。所以,可以认为UTC是真正的基准时间,GMT相对UTC的偏差为0。

在实际中,我们的计算机中有一个硬件模块RCT,里面会实时记录UTC 时间,该模块有单独的电池供电,即使关机也不影响。有了epoch这个时间基准,又有了UTC这个基准的基准,我们就可以精确地表示一个时间了。

DST,tzone

我们已经可以精确地表示一个时间,很多情况下,我们还是要根据地区实际情况对时间进行一个调整,最常见的就是时区(tzone),此时,当我们说3点10分这个时间该打球了,还需加上是哪个时区的3点10分才能精确说明一个时间。另外一个对时间做出调整的就是DST.

DST 全称是Daylight Saving Time,为了充分利用日光,减少用电,人为地对时间做出一个调整,这取决于不同国家和地区的政策法规。比如说,假设你冬天7点天亮起床,但夏天6点天亮,那么在夏天到来时人为将时间加1个小时,这样就可以让你还是觉得7点起床,但实际上是提前一个小时了。

那么一定要问一问,python是如何知道tzone和DST这两个的值呢?答案是通过环境变量。

我们只以linux中TZ环境变量为例来说明一下。

CST+08EDT,M4.1.0,M10.5.0,这个字符串用空格分开他们,分成三部分

CST+08 EDT, M4.1.0, M10.5.0

第一部分中的CST表示时区的名字,即China Standard Time,也就是我们说的北京时间,+8表示北京时间减去8小时就是UTC时间

第二部分EDT表示DST的名字,我们说DST是因各个国家地区的政策法规不同而不同的,EDT后面也可以像CST后面一样加一个时间调整值,但由于我们国内只在86年到92年实行过一段时间DST,现在已经废止,所以后面不用加调整时间。

第三部分表示的是实行DST的开始和结束时间,没有在查询具体细节。

2. time模块

import time

t = time.time() # 从epoch到现在的秒数(用浮点数表示),用的是UTC时间

我们想把上面获取的秒数转换为年月日时分秒的形式,这种转换分为两种情况:一种是用UTC时间,一种用我们时区调整后的时间,二者都返回一个类struct_time的实例这两个函数如果调用时不传参数,它们内部会调用time.time(),并用返回的秒数做转换

time.gmtime(t) # 时间戳转换为UTC时区(0时区)的struct_time

time.localtime(t) # 所在时区调整后的时间

相反的,python同样提供了将这两种struct_time转为秒数的方法。

import calendar

calendar.timegm() # 把UTC的struct_time(gmtime的返回对象)转为从epoch开始的秒数

time.mktime() # 用来把用时区调整过的struct_time(即localtime的返回对象)对象转为从epoch开始的秒数

在时间和表示时间的字符串之间进行转换,time模块中的strftime和strptime就是做这个的。

strftime 即 string format time,用来将时间格式化成字符串

strptime 即string parse time,用来将字符串解析成时间

asctime 用来将一个struct_time对象转为标准24字符的字符串

ctime 方法与asctime作用相同,只不过它接收的是秒数,在内部,会先把秒数通过localtime转为struct_time,再往后就与asctime一样了

import time

time.localtime(time.time()) # 时间元组

fmt = '%Y-%m-%d %H:%M:%S'

time.strftime(fmt[,tupletime]) # 接收时间元组,并返回以可读字符串表示的当地时间,格式由fmt决定。

time.strptime(str,fmt='%a %b %d %H:%M:%S %Y') # 根据fmt的格式把一个时间字符串解析为时间元组

ime.mktime(tupletime) # 接受时间元组并返回时间戳(1970纪元后经过的浮点秒数)

time.sleep(secs) # 线程推迟指定的时间运行。单位为秒

time.clock() # 这个需要注意,在不同的系统上含义不同。在UNIX系统上,它返回的是“进程时间”,它是用秒表示的浮点数(时间戳)。而在WINDOWS中,第一次调用,返回的是进程运行的实际时间。而第二次之后的调用是自第一次调用以后到现在的运行时间。(实际上是以WIN32上QueryPerformanceCounter()为基础,它比毫秒表示更为精确)

time.asctime([t]) # 把一个表示时间的元组或者struct_time表示为这种形式:'Sun Jun 20 23:21:05 2020'。如果没有参数,将会将time.localtime()作为参数传入

time.ctime([secs]) # 把一个时间戳(按秒计算的浮点数)转化为time.asctime()的形式。如果参数未给或者为None的时候,将会默认time.time()即当前时间戳为参数。它的作用相当time.asctime(time.localtime(secs))

小结:

time点time得秒数,结果传入gm, local time得struct_time。

要想变回原秒数你得传回calendar.timegm和time. mktime。

string f和string p格式化时间就靠他两个。

asctime ,ctime来助力,专门转字符串,前者接收struct_time,后者专门处理秒数

3. datetime模块



推荐阅读
  • 蓝桥竞赛中的回形取数问题是一个经典的算法挑战。本文详细解析了该问题的正确实现代码,重点探讨了 `hasNext()` 和 `next()` 方法的区别与应用。尽管两者在功能上类似,都会等待用户输入下一个字符,但它们的返回值类型不同,`hasNext()` 返回一个布尔值,表示是否还有输入,而 `next()` 则直接返回下一个输入的值。通过具体的代码示例和详细的逻辑分析,本文为参赛者提供了宝贵的参考和指导。 ... [详细]
  • 在深入探讨进程间通信技术时,本文重点解析了描述符传递的方法。通过详细分析发送和接收描述符的过程,文章首先介绍了发送描述符的具体步骤,并提供了相关函数原型。此外,还讨论了如何高效地在不同进程之间传输文件描述符,以实现资源的共享和同步。这一技术在多进程应用中具有重要意义,能够显著提升系统的性能和可靠性。 ... [详细]
  • Ping 命令的高级用法与技巧
    本文详细介绍了 Ping 命令的各种高级用法和技巧,帮助读者更好地理解和利用这一强大的网络诊断工具。 ... [详细]
  • 文章目录Golang定时器Timer和Tickertime.Timertime.NewTimer()实例time.AfterFunctime.Tickertime.NewTicke ... [详细]
  • 性能测试中的关键监控指标与深入分析
    在软件性能测试中,关键监控指标的选取至关重要。主要目的包括:1. 评估系统的当前性能,确保其符合预期的性能标准;2. 发现软件性能瓶颈,定位潜在问题;3. 优化系统性能,提高用户体验。通过综合分析这些指标,可以全面了解系统的运行状态,为后续的性能改进提供科学依据。 ... [详细]
  • SecureCRT是一款功能强大的终端仿真软件,支持SSH1和SSH2协议,适用于在Windows环境下高效连接和管理Linux服务器。该工具不仅提供了稳定的连接性能,还具备丰富的配置选项,能够满足不同用户的需求。通过SecureCRT,用户可以轻松实现对远程Linux系统的安全访问和操作。 ... [详细]
  • 帝国CMS中的信息归档功能详解及其重要性
    本文详细解析了帝国CMS中的信息归档功能,并探讨了其在内容管理中的重要性。通过归档功能,用户可以有效地管理和组织大量内容,提高网站的运行效率和用户体验。此外,文章还介绍了如何利用该功能进行数据备份和恢复,确保网站数据的安全性和完整性。 ... [详细]
  • 深入解析Linux内核中的进程上下文切换机制
    在现代操作系统中,进程作为核心概念之一,负责管理和分配系统资源,如CPU和内存。深入了解Linux内核中的进程上下文切换机制,需要首先明确进程与程序的区别。进程是一个动态的执行流,而程序则是静态的数据和指令集合。进程上下文切换涉及保存当前进程的状态信息,并加载下一个进程的状态,以实现多任务处理。这一过程不仅影响系统的性能,还关系到资源的有效利用。通过分析Linux内核中的具体实现,可以更好地理解其背后的原理和技术细节。 ... [详细]
  • Linux基础知识:Vi与Vim编辑器详解
    Linux基础知识:Vi与Vim编辑器详解 ... [详细]
  • DRF框架中Serializer反序列化验证机制详解:深入探讨Validators的应用与优化
    在DRF框架的反序列化验证机制中,除了基本的字段类型和长度校验外,还常常需要进行更为复杂的条件限制校验。通过引入`validators`模块,可以实现自定义校验逻辑,如唯一字段校验等。本文将详细探讨`validators`的使用方法及其优化策略,帮助开发者更好地理解和应用这一重要功能。 ... [详细]
  • 深入解析 Java UTC 时间处理技术与应用 ... [详细]
  • 本文详细探讨了Zebra路由软件中的线程机制及其实际应用。通过对Zebra线程模型的深入分析,揭示了其在高效处理网络路由任务中的关键作用。文章还介绍了线程同步与通信机制,以及如何通过优化线程管理提升系统性能。此外,结合具体应用场景,展示了Zebra线程机制在复杂网络环境下的优势和灵活性。 ... [详细]
  • Shell参数详解与应用
    本文详细介绍了Shell参数的种类及其应用,内容简洁明了,结构清晰。通过深入解析各类参数的功能和使用方法,旨在帮助读者更好地理解和掌握Shell编程技巧,提升实际操作能力。 ... [详细]
  • Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。 ... [详细]
  • Linux 信号处理全面解析(第六篇)
    本文深入探讨了信号及其来源。信号本质上是对中断机制的软件层面模拟,从原理上看,进程接收到信号与处理器接收到中断请求类似。信号具有异步特性,能够在进程执行过程中随时触发,从而中断当前操作并执行相应的处理程序。文章详细分析了信号的生成、传递和处理机制,并讨论了常见的信号类型及其应用场景。此外,还介绍了如何在 Linux 系统中使用信号进行进程间通信和错误处理,为开发者提供了实用的技术指导。 ... [详细]
author-avatar
许桂欢_173
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有