热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python使用ProjectQ生成量子算法指令集

在量子计算机领域,由于实现方案的不同,在不同的体系内的指令集其实是不一样的,并不是说OpenQASM里面的所有指令都会被支持。但是这也没有关系,因为本文将要介绍的开源量子计算模拟器

python使用ProjectQ生成量子算法指令集

输出算法操作

首先介绍一个最基本的使用方法,就是使用ProjectQ来打印量子算法中所输入的量子门操作,这里使用到了ProjectQ中的DummyEngine后端用于保存操作的指令。比如最简单的一个Bell State的制备,可以通过如下代码实现,并且打印出所保存的基本操作:

from projectq import MainEngine
from projectq.cengines import DummyEngine
from projectq.ops import H, CX, All, Measure

backend = DummyEngine(save_commands=True)
eng = MainEngine(backend=backend)

qureg = eng.allocate_qureg(2)
H | qureg[0]
CX | (qureg[0], qureg[1])

All(Measure) | qureg
eng.flush(deallocate_qubits=True)

for cmd in backend.received_commands:
    print (cmd)

运行结果如下:

Allocate | Qureg[0]
H | Qureg[0]
Allocate | Qureg[1]
CX | ( Qureg[0], Qureg[1] )
Measure | Qureg[0]
Measure | Qureg[1]
Deallocate | Qureg[0]
Deallocate | Qureg[1]

这里有一点需要注意的是,如果是单次运算,我们到Measure就可以结束了。但是如果同一个线程的任务还没有结束的话,需要在Measure之后加上一个deallocate_qubits=True的配置项,用于解除当前分配的量子比特所占用的内存。

封装的操作

在量子算法的实现中,我们可以用一些函数或者类来封装一部分的量子算法操作指令,但是这可能会导致一个问题,那就是在ProjectQ上打印出来的操作指令没有把封装的模块的内容输出出来,比如如下的案例:

from projectq import MainEngine
from projectq.cengines import DummyEngine
from projectq.ops import H, CX, All, Measure, TimeEvolution, QubitOperator

backend = DummyEngine(save_commands=True)
eng = MainEngine(backend=backend)

qureg = eng.allocate_qureg(3)
H | qureg[0]
CX | (qureg[0], qureg[1])
TimeEvolution(1, QubitOperator("X2 X1")) | qureg

All(Measure) | qureg
eng.flush()

for cmd in backend.received_commands:
    print (cmd)

执行结果如下:

Allocate | Qureg[0]
H | Qureg[0]
Allocate | Qureg[1]
CX | ( Qureg[0], Qureg[1] )
Measure | Qureg[0]
Allocate | Qureg[2]
exp(-1j * (1.0 X0 X1)) | Qureg[1-2]
Measure | Qureg[1]
Measure | Qureg[2]

我们发现这里的含时演化的操作算符没有被分解,而是直接打印输出了出来。但是如果在硬件系统中,只能够识别支持的指令操作,这里的含时演化操作可能并未在量子硬件体系中被实现,因此我们就需要在将指令发送给量子硬件之前,就对其进行分解。

含时演化算符的分解

这里我们直接调用ProjectQ的配置中的restrictedgateset方法进行操作分解,我们将单比特门操作的范围放宽到所有的操作,但是双比特操作只允许CX操作,并将这个配置作为engin_list配置到ProjectQ的MainEngine中:

from projectq import MainEngine
from projectq.cengines import DummyEngine
from projectq.ops import H, CX, All, Measure, TimeEvolution, QubitOperator
from projectq.setups import restrictedgateset

engine_list = restrictedgateset.get_engine_list(one_qubit_gates="any",two_qubit_gates=(CX,))
backend = DummyEngine(save_commands=True)
eng = MainEngine(backend=backend,engine_list=engine_list)

qureg = eng.allocate_qureg(3)
H | qureg[0]
CX | (qureg[0], qureg[1])
TimeEvolution(1, QubitOperator("X2 X1")) | qureg

All(Measure) | qureg
eng.flush(deallocate_qubits=True)

for cmd in backend.received_commands:
    print (cmd)

打印输出的结果如下:

Allocate | Qureg[0]
H | Qureg[0]
Allocate | Qureg[1]
CX | ( Qureg[0], Qureg[1] )
Measure | Qureg[0]
Allocate | Qureg[2]
H | Qureg[2]
H | Qureg[1]
CX | ( Qureg[1], Qureg[2] )
Rz(2.0) | Qureg[2]
CX | ( Qureg[1], Qureg[2] )
H | Qureg[1]
Measure | Qureg[1]
H | Qureg[2]
Measure | Qureg[2]
Deallocate | Qureg[0]
Deallocate | Qureg[1]
Deallocate | Qureg[2]

可以看到含时演化算符已经被分解并输出了出来。由于已知单比特量子门加上一个CX是一个完备的量子门集合,因此一般我们可以直接使用这个集合来进行量子门操作指令集的限制。

QFT的分解

QFT是ProjectQ中所自带支持的量子傅里叶变换的量子门操作封装,跟上一个章节中所介绍的含时演化算符类似的,我们可以用restrictedgateset来具体分解QFT算符:

from projectq import MainEngine
from projectq.cengines import DummyEngine
from projectq.ops import H, CX, All, Measure, TimeEvolution, QubitOperator, QFT
from projectq.setups import restrictedgateset

engine_list = restrictedgateset.get_engine_list(one_qubit_gates="any",two_qubit_gates=(CX,))
backend = DummyEngine(save_commands=True)
eng = MainEngine(backend=backend,engine_list=engine_list)

qureg = eng.allocate_qureg(3)
H | qureg[0]
CX | (qureg[0], qureg[1])
QFT | qureg

All(Measure) | qureg
eng.flush(deallocate_qubits=True)

for cmd in backend.received_commands:
    print (cmd)

输出的结果如下:

Allocate | Qureg[2]
Allocate | Qureg[1]
H | Qureg[2]
Rz(0.785398163398) | Qureg[2]
Allocate | Qureg[0]
H | Qureg[0]
CX | ( Qureg[0], Qureg[1] )
R(0.785398163398) | Qureg[1]
CX | ( Qureg[1], Qureg[2] )
Rz(11.780972450962) | Qureg[2]
CX | ( Qureg[1], Qureg[2] )
R(0.392699081698) | Qureg[0]
Rz(0.392699081698) | Qureg[2]
CX | ( Qureg[0], Qureg[2] )
H | Qureg[1]
Rz(12.173671532661) | Qureg[2]
CX | ( Qureg[0], Qureg[2] )
R(0.785398163398) | Qureg[0]
Rz(0.785398163398) | Qureg[1]
CX | ( Qureg[0], Qureg[1] )
Rz(11.780972450962) | Qureg[1]
CX | ( Qureg[0], Qureg[1] )
H | Qureg[0]
Measure | Qureg[0]
Measure | Qureg[1]
Measure | Qureg[2]
Deallocate | Qureg[1]
Deallocate | Qureg[2]
Deallocate | Qureg[0]

如果2比特门操作也不加以限制的化,ProjectQ中会自动选取最简易的分解形式:

from projectq import MainEngine
from projectq.cengines import DummyEngine
from projectq.ops import H, CX, All, Measure, TimeEvolution, QubitOperator, QFT
from projectq.setups import restrictedgateset

engine_list = restrictedgateset.get_engine_list(one_qubit_gates="any",two_qubit_gates="any")
backend = DummyEngine(save_commands=True)
eng = MainEngine(backend=backend,engine_list=engine_list)

qureg = eng.allocate_qureg(3)
H | qureg[0]
CX | (qureg[0], qureg[1])
QFT | qureg

All(Measure) | qureg
eng.flush(deallocate_qubits=True)

for cmd in backend.received_commands:
    print (cmd)

输出结果如下:

Allocate | Qureg[0]
Allocate | Qureg[1]
H | Qureg[0]
CX | ( Qureg[0], Qureg[1] )
Allocate | Qureg[2]
H | Qureg[2]
CR(1.570796326795) | ( Qureg[1], Qureg[2] )
CR(0.785398163397) | ( Qureg[0], Qureg[2] )
H | Qureg[1]
CR(1.570796326795) | ( Qureg[0], Qureg[1] )
H | Qureg[0]
Measure | Qureg[0]
Measure | Qureg[1]
Measure | Qureg[2]
Deallocate | Qureg[1]
Deallocate | Qureg[2]
Deallocate | Qureg[0]

可以发现使用了CR来替代CX之后,分解出来的线路会更加的简短。

总结概要

本文主要从工程实现的角度,讲解在ProjectQ开源量子计算模拟器框架中,实现量子门操作分解与输出的方法。通过这个方法,可以限制量子指令集的范围,将量子算法中不被支持的量子门操作等价(或近似地)变化到量子硬件体系所支持的量子指令集上。

以上就是python使用ProjectQ生成量子算法指令集的详细内容,更多关于python 用ProjectQ生成算法指令集的资料请关注编程笔记其它相关文章!


推荐阅读
  • 本文介绍了两种使用Java发送短信的方法:利用第三方平台的HTTP请求和通过硬件设备短信猫。重点讲解了如何通过Java代码配置和使用短信猫发送短信的过程,包括必要的编码转换、串口操作及短信发送的核心逻辑。 ... [详细]
  • Spring Boot 入门指南
    本文介绍了Spring Boot的基本概念及其在现代Java应用程序开发中的作用。Spring Boot旨在简化Spring应用的初始设置和开发过程,通过自动配置和约定优于配置的原则,帮助开发者快速构建基于Spring框架的应用。 ... [详细]
  • Eclipse 下 JavaFX 程序开发指南
    本文介绍了 JavaFX,这是一个用于创建富客户端应用程序的 Java 图形和媒体工具包,并详细说明了如何在 Eclipse 环境中配置和开发 JavaFX 应用。 ... [详细]
  • 主板市盈率、市净率及股息率的自动化抓取
    本文介绍了如何通过Python脚本自动从中国指数有限公司网站抓取主板的市盈率、市净率和股息率等关键财务指标,并将这些数据存储到CSV文件中。涉及的技术包括网页解析、正则表达式以及异常处理。 ... [详细]
  • 使用Python爬虫技术从网页中提取图片链接的方法与示例
    本篇文章将详细介绍如何通过Python编程语言来实现从指定网页上抓取图片链接的功能,并提供了一个实用的代码示例。 ... [详细]
  • 深入理解设计模式之观察者模式
    本文详细介绍了观察者模式,这是一种行为设计模式,适用于当对象状态发生变化时,需要通知其他相关对象的场景。文中不仅解释了观察者模式的基本概念,还通过Java代码示例展示了其实现方法。 ... [详细]
  • 近期探讨了‘内部螺旋矩阵算法’的实现细节,并深入分析了面向对象编程中的可扩展性问题。基于这些讨论,本文通过引入桥梁设计模式对原有代码进行了优化与重构,以增强代码的灵活性和可维护性。 ... [详细]
  • Python多线程编程详解
    本文深入探讨了Python中的多线程机制,包括线程的基本概念、创建线程的方法以及线程间的通信策略。 ... [详细]
  • 开发笔记:小程序分类页实现三级分类,顶部导航栏,左侧分类栏,右侧数据列表
    开发笔记:小程序分类页实现三级分类,顶部导航栏,左侧分类栏,右侧数据列表 ... [详细]
  • 按照频率降序打印数字 ... [详细]
  • 本文将详细介绍NSRunLoop的工作原理,包括其基本概念、消息类型(事件源)、运行模式、生命周期管理以及嵌套运行等关键知识点,帮助开发者更好地理解和应用这一重要技术。 ... [详细]
  • 精通C++并非易事,为何它比其他语言更难掌握?这主要归因于C++的设计理念,即不强迫用户接受特定的编程风格或限制创新思维。本文探讨了如何有效学习C++,并介绍了几本权威的学习资源。 ... [详细]
  • 在使用 Spring Cloud Config 作为配置中心时,若在配置文件中指定了请求路径但未能生效,本文将探讨其原因及解决方案。 ... [详细]
  • 本文探讨了在渗透测试中信息收集阶段使用的几种端口扫描技术,包括nmap、masscan、socket、telnet及nc等工具的应用与比较。 ... [详细]
  • 本文由「Vue虚拟实验室」的成员effort撰写,深入探讨了Vue CLI 3.0创建项目后的配置细节,特别是如何通过配置代理解决开发环境中的跨域问题。 ... [详细]
author-avatar
慈禧太后她妈_151
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有