热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python机器学习sklearn岭回归(Ridge、RidgeCV)

1、介绍Ridge回归通过对系数的大小施加惩罚来解决普通最小二乘法的一些问题。岭系数最小化的是带罚项的残差平方和,其中,α≥0α≥0是控制系数收缩量的

  1、介绍

    Ridge 回归通过对系数的大小施加惩罚来解决 普通最小二乘法 的一些问题。 岭系数最小化的是带罚项的残差平方和,

    

    其中,α≥0α≥0 是控制系数收缩量的复杂性参数: αα 的值越大,收缩量越大,这样系数对共线性的鲁棒性也更强。

    

  2、参数    

    alpha:{float,array-like},shape(n_targets)
      正则化强度; 必须是正浮点数。 正则化改善了问题的条件并减少了估计的方差。 较大的值指定较强的正则化。 Alpha对应于其他线性模型(如Logistic回归或LinearSVC)中的C^-1。

     如果传递数组,则假定惩罚被特定于目标。 因此,它们必须在数量上对应。

    copy_X:boolean,可选,默认为True
      如果为True,将复制X; 否则,它可能被覆盖。

    fit_intercept:boolean
      是否计算此模型的截距。 如果设置为false,则不会在计算中使用截距(例如,数据预期已经居中)。

    max_iter:int,可选
      共轭梯度求解器的最大迭代次数。 对于’sparse_cg’和’lsqr’求解器,默认值由scipy.sparse.linalg确定。 对于’sag’求解器,默认值为1000。

    normalize:boolean,可选,默认为False
      如果为真,则回归X将在回归之前被归一化。 当fit_intercept设置为False时,将忽略此参数。 当回归量归一化时,注意到这使得超参数学习更加鲁棒,

    并且几乎不依赖于样本的数量。 相同的属性对标准化数据无效。 然而,如果你想标准化,请在调用normalize = False训练估计器之前,使用preprocessing.StandardScaler处理数据。

    solver:{‘auto’,’svd’,’cholesky’,’lsqr’,’sparse_cg’,’sag’}
      用于计算的求解方法:
      ‘auto’根据数据类型自动选择求解器。
      ‘svd’使用X的奇异值分解来计算Ridge系数。对于奇异矩阵比’cholesky’更稳定。
      ‘cholesky’使用标准的scipy.linalg.solve函数来获得闭合形式的解。
      ‘sparse_cg’使用在scipy.sparse.linalg.cg中找到的共轭梯度求解器。作为迭代算法,这个求解器比大规模数据(设置tol和max_iter的可能性)的“cholesky”更合适。
      ‘lsqr’使用专用的正则化最小二乘常数scipy.sparse.linalg.lsqr。它是最快的,但可能不是在旧的scipy版本可用。它还使用迭代过程。
      ‘sag’使用随机平均梯度下降。它也使用迭代过程,并且当n_samples和n_feature都很大时,通常比其他求解器更快。注意,“sag”快速收敛仅在具有近似相同尺度的特征上被保证。

      可以使用sklearn.preprocessing的缩放器预处理数据。
      所有最后四个求解器支持密集和稀疏数据。但是,当fit_intercept为True时,只有’sag’支持稀疏输入。
      新版本0.17支持:随机平均梯度下降解算器。

    tol:float   解的精度。

    random_state:int seed,RandomState实例或None(默认)
      伪随机数生成器的种子,当混洗数据时使用。 仅用于’sag’求解器。
      新版本0.17:random_state支持随机平均渐变。

  3、返回值    

    coef_:array,shape(n_features,)或(n_targets,n_features)


  4、权重向量。

    intercept_:float | array,shape =(n_targets,)
    决策函数的独立项,即截距。 如果fit_intercept = False,则设置为0.0。

    n_iter_:array或None,shape(n_targets,)
    每个目标的实际迭代次数。 仅适用于sag和lsqr求解器。 其他求解器将返回None。在版本0.17中出现。

 

  5、实例代码

print(__doc__)

from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import Ridge,RidgeCV

import matplotlib.font_manager as fm
myfont = fm.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')
data=[
    [0.607492, 3.965162], [0.358622, 3.514900], [0.147846, 3.125947], [0.637820, 4.094115], [0.230372, 3.476039],
    [0.070237, 3.210610], [0.067154, 3.190612], [0.925577, 4.631504], [0.717733, 4.295890], [0.015371, 3.085028],
    [0.067732, 3.176513], [0.427810, 3.816464], [0.995731, 4.550095], [0.738336, 4.256571], [0.981083, 4.560815],
    [0.247809, 3.476346], [0.648270, 4.119688], [0.731209, 4.282233], [0.236833, 3.486582], [0.969788, 4.655492],
    [0.335070, 3.448080], [0.040486, 3.167440], [0.212575, 3.364266], [0.617218, 3.993482], [0.541196, 3.891471],
    [0.526171, 3.929515], [0.378887, 3.526170], [0.033859, 3.156393], [0.132791, 3.110301], [0.138306, 3.149813]
]

#生成X和y矩阵
dataMat = np.array(data)

# X = dataMat[:,0:1]   # 变量x
X = dataMat[:,0:1]   # 变量x
y = dataMat[:,1]   #变量y
X_train,X_test,y_train,y_test = train_test_split(X,y ,train_size=0.8)
# model = Ridge(alpha=0.5)
model = RidgeCV(alphas=[0.1, 1.0, 10.0])  # 通过RidgeCV可以设置多个参数值,算法使用交叉验证获取最佳参数值
model.fit(X_train, y_train)   # 线性回归建模
# print('系数矩阵:\n',model.coef_)
# print('线性回归模型:\n',model)
# print('交叉验证最佳alpha值',model.alpha_)  # 只有在使用RidgeCV算法时才有效
# 使用模型预测
y_predicted = model.predict(X_test)
plt.scatter(X_train, y_train, marker='o',color='green',label='训练数据')

# 绘制散点图 参数:x横轴 y纵轴
plt.scatter(X_test, y_predicted, marker='*',color='blue',label='测试数据')
plt.legend(loc=2,prop=myfont)
plt.plot(X_test, y_predicted,c='r')

# 绘制x轴和y轴坐标
plt.xlabel("x")
plt.ylabel("y")

# 显示图形
plt.show()

  6、显示图形

   

   参考:https://blog.csdn.net/luanpeng825485697/article/details/79829778

 


推荐阅读
  • Ihavetwomethodsofgeneratingmdistinctrandomnumbersintherange[0..n-1]我有两种方法在范围[0.n-1]中生 ... [详细]
  • 在Android 4.4系统中,通过使用 `Intent` 对象并设置动作 `ACTION_GET_CONTENT` 或 `ACTION_OPEN_DOCUMENT`,可以从相册中选择图片并获取其路径。具体实现时,需要为 `Intent` 添加相应的类别,并处理返回的 Uri 以提取图片的文件路径。此方法适用于需要从用户相册中选择图片的应用场景,能够确保兼容性和用户体验。 ... [详细]
  • 本文介绍了UUID(通用唯一标识符)的概念及其在JavaScript中生成Java兼容UUID的代码实现与优化技巧。UUID是一个128位的唯一标识符,广泛应用于分布式系统中以确保唯一性。文章详细探讨了如何利用JavaScript生成符合Java标准的UUID,并提供了多种优化方法,以提高生成效率和兼容性。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 本文回顾了作者初次接触Unicode编码时的经历,并详细探讨了ASCII、ANSI、GB2312、UNICODE以及UTF-8和UTF-16编码的区别和应用场景。通过实例分析,帮助读者更好地理解和使用这些编码。 ... [详细]
  • 本文总结了在SQL Server数据库中编写和优化存储过程的经验和技巧,旨在帮助数据库开发人员提升存储过程的性能和可维护性。 ... [详细]
  • 探讨如何在Go语言中高效地处理大规模切片的去重操作,特别是针对百万级数据量的场景。 ... [详细]
  • 开机自启动的几种方式
    0x01快速自启动目录快速启动目录自启动方式源于Windows中的一个目录,这个目录一般叫启动或者Startup。位于该目录下的PE文件会在开机后进行自启动 ... [详细]
  • 第二十五天接口、多态
    1.java是面向对象的语言。设计模式:接口接口类是从java里衍生出来的,不是python原生支持的主要用于继承里多继承抽象类是python原生支持的主要用于继承里的单继承但是接 ... [详细]
  • 如何在Linux服务器上配置MySQL和Tomcat的开机自动启动
    在Linux服务器上部署Web项目时,通常需要确保MySQL和Tomcat服务能够随系统启动而自动运行。本文将详细介绍如何在Linux环境中配置MySQL和Tomcat的开机自启动,以确保服务的稳定性和可靠性。通过合理的配置,可以有效避免因服务未启动而导致的项目故障。 ... [详细]
  • 非线性门控感知器算法的实现与应用分析 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 在 Linux 环境下,多线程编程是实现高效并发处理的重要技术。本文通过具体的实战案例,详细分析了多线程编程的关键技术和常见问题。文章首先介绍了多线程的基本概念和创建方法,然后通过实例代码展示了如何使用 pthreads 库进行线程同步和通信。此外,还探讨了多线程程序中的性能优化技巧和调试方法,为开发者提供了宝贵的实践经验。 ... [详细]
  • 每年,意甲、德甲、英超和西甲等各大足球联赛的赛程表都是球迷们关注的焦点。本文通过 Python 编程实现了一种生成赛程表的方法,该方法基于蛇形环算法。具体而言,将所有球队排列成两列的环形结构,左侧球队对阵右侧球队,首支队伍固定不动,其余队伍按顺时针方向循环移动,从而确保每场比赛不重复。此算法不仅高效,而且易于实现,为赛程安排提供了可靠的解决方案。 ... [详细]
  • 本文总结了JavaScript的核心知识点和实用技巧,涵盖了变量声明、DOM操作、事件处理等重要方面。例如,通过`event.srcElement`获取触发事件的元素,并使用`alert`显示其HTML结构;利用`innerText`和`innerHTML`属性分别设置和获取文本内容及HTML内容。此外,还介绍了如何在表单中动态生成和操作``元素,以便更好地处理用户输入。这些技巧对于提升前端开发效率和代码质量具有重要意义。 ... [详细]
author-avatar
一粒小小无名砂_741
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有