热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

python程序中的线程操作concurrent模块使用详解

这篇文章主要介绍了python程序中的线程操作concurrent模块使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

一、concurrent模块的介绍

concurrent.futures模块提供了高度封装的异步调用接口

ThreadPoolExecutor:线程池,提供异步调用

ProcessPoolExecutor:进程池,提供异步调用

ProcessPoolExecutorThreadPoolExecutor:两者都实现相同的接口,该接口由抽象Executor类定义。

二、基本方法

submit(fn, *args, **kwargs) :异步提交任务

map(func, *iterables, timeout=None, chunksize=1) :取代for循环submit的操作

shutdown(wait=True) :相当于进程池的pool.close()+pool.join()操作

  • wait=True,等待池内所有任务执行完毕回收完资源后才继续
  • wait=False,立即返回,并不会等待池内的任务执行完毕
  • 但不管wait参数为何值,整个程序都会等到所有任务执行完毕
  • submit和map必须在shutdown之前

result(timeout=None) :取得结果

add_done_callback(fn) :回调函数

三、进程池和线程池

池的功能:限制进程数或线程数.

什么时候限制: 当并发的任务数量远远大于计算机所能承受的范围,即无法一次性开启过多的任务数量 我就应该考虑去限制我进程数或线程数,从保证服务器不崩.

3.1 进程池

from concurrent.futures import ProcessPoolExecutor
from multiprocessing import Process,current_process
import time
def task(i):
  print(f'{current_process().name} 在执行任务{i}')
  time.sleep(1)
if __name__ == '__main__':
  pool = ProcessPoolExecutor(4) # 进程池里又4个进程
  for i in range(20): # 20个任务
    pool.submit(task,i)# 进程池里当前执行的任务i,池子里的4个进程一次一次执行任务

3.2 线程池

from concurrent.futures import ThreadPoolExecutor
from threading import Thread,currentThread
import time
def task(i):
  print(f'{currentThread().name} 在执行任务{i}')
  time.sleep(1)
if __name__ == '__main__':
  pool = ThreadPoolExecutor(4) # 进程池里又4个线程
  for i in range(20): # 20个任务
    pool.submit(task,i)# 线程池里当前执行的任务i,池子里的4个线程一次一次执行任务

四、Map的用法

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
import os,time,random
def task(n):
  print('%s is runing' %os.getpid())
  time.sleep(random.randint(1,3))
  return n**2
if __name__ == '__main__':
  executor=ThreadPoolExecutor(max_workers=3)
  # for i in range(20):
  #   future=executor.submit(task,i)
  executor.map(task,range(1,21)) #map取代了for+submit

五、同步和异步

理解为提交任务的两种方式

同步: 提交了一个任务,必须等任务执行完了(拿到返回值),才能执行下一行代码

异步: 提交了一个任务,不要等执行完了,可以直接执行下一行代码.

同步:相当于执行任务的串行执行

异步

from concurrent.futures import ProcessPoolExecutor
from multiprocessing import Process,current_process
import time
n = 1
def task(i):
  global n
  print(f'{current_process().name} 在执行任务{i}')
  time.sleep(1)
  n += i
  return n
if __name__ == '__main__':
  pool = ProcessPoolExecutor(4) # 进程池里又4个线程
  pool_lis = []
  for i in range(20): # 20个任务
    future = pool.submit(task,i)# 进程池里当前执行的任务i,池子里的4个线程一次一次执行任务
    # print(future.result()) # 这是在等待我执行任务得到的结果,如果一直没有结果,这里会导致我们所有任务编程了串行
                # 在这里就引出了下面的pool.shutdown()方法
    pool_lis.append(future)
  pool.shutdown(wait=True) # 关闭了池的入口,不允许在往里面添加任务了,会等带所有的任务执行完,结束阻塞
  for p in pool_lis:
    print(p.result())
  print(n)# 这里一开始肯定是拿到0的,因为我只是去告诉操作系统执行子进程的任务,代码依然会继续往下执行
  # 可以用join去解决,等待每一个进程结束后,拿到他的结果

六、回调函数

import time
from threading import Thread,currentThread
from concurrent.futures import ThreadPoolExecutor
def task(i):
  print(f'{currentThread().name} 在执行{i}')
  time.sleep(1)
  return i**2

# parse 就是一个回调函数
def parse(future):
  # 处理拿到的结果
  print(f'{currentThread().name} 结束了当前任务')
  print(future.result())
if __name__ == '__main__':
  pool = ThreadPoolExecutor(4)
  for i in range(20):
    future = pool.submit(task,i)
    '''
    给当前执行的任务绑定了一个函数,在当前任务结束的时候就会触发这个函数(称之为回调函数)
    会把future对象作为参数传给函数
    注:这个称为回调函数,当前任务处理结束了,就回来调parse这个函数
    '''
    future.add_done_callback(parse)
    # add_done_callback (parse) parse是一个回调函数
    # add_done_callback () 是对象的一个绑定方法,他的参数就是一个函数

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


推荐阅读
  • Windows服务与数据库交互问题解析
    本文探讨了在Windows 10(64位)环境下开发的Windows服务,旨在定期向本地MS SQL Server (v.11)插入记录。尽管服务已成功安装并运行,但记录并未正确插入。我们将详细分析可能的原因及解决方案。 ... [详细]
  • 探讨如何通过编程技术实现100个并发连接,解决线程创建顺序问题,并提供高效的并发测试方案。 ... [详细]
  • 梦幻西游挖图奇遇:70级项链意外触发晶清诀,3000W轻松到手
    在梦幻西游中,挖图是一项备受欢迎的活动,无论是小宝图还是高级藏宝图,都吸引了大量玩家参与。通常情况下,小宝图的数量保证了稳定的收益,但特技装备的出现往往能带来意想不到的惊喜。本文讲述了一位玩家通过挖图获得70级晶清项链的故事,最终实现了3000W的游戏币逆袭。 ... [详细]
  • 本文探讨了 RESTful API 和传统接口之间的关键差异,解释了为什么 RESTful API 在设计和实现上具有独特的优势。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 如何配置Unturned服务器及其消息设置
    本文详细介绍了Unturned服务器的配置方法和消息设置技巧,帮助用户了解并优化服务器管理。同时,提供了关于云服务资源操作记录、远程登录设置以及文件传输的相关补充信息。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
  • MQTT技术周报:硬件连接与协议解析
    本周开发笔记重点介绍了在新项目中使用MQTT协议进行硬件连接的技术细节,涵盖其特性、原理及实现步骤。 ... [详细]
  • UNP 第9章:主机名与地址转换
    本章探讨了用于在主机名和数值地址之间进行转换的函数,如gethostbyname和gethostbyaddr。此外,还介绍了getservbyname和getservbyport函数,用于在服务器名和端口号之间进行转换。 ... [详细]
  • 邮件(带附件,模拟文件上传,跨服务器)发送核心代码1.测试邮件发送附件接口***测试邮件发送附件*@parammultipartFile*@return*@RequestMappi ... [详细]
  • 360SRC安全应急响应:从漏洞提交到修复的全过程
    本文详细介绍了360SRC平台处理一起关键安全事件的过程,涵盖从漏洞提交、验证、排查到最终修复的各个环节。通过这一案例,展示了360在安全应急响应方面的专业能力和严谨态度。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 本文探讨了在不使用服务器控件的情况下,如何通过多种方法获取并修改页面中的HTML元素值。除了常见的AJAX方式,还介绍了其他可行的技术方案。 ... [详细]
  • 解读MySQL查询执行计划的详细指南
    本文旨在帮助开发者和数据库管理员深入了解如何解读MySQL查询执行计划。通过详细的解析,您将掌握优化查询性能的关键技巧,了解各种访问类型和额外信息的含义。 ... [详细]
  • 掌握远程执行Linux脚本和命令的技巧
    本文将详细介绍如何利用Python的Paramiko库实现远程执行Linux脚本和命令,帮助读者快速掌握这一实用技能。通过具体的示例和详尽的解释,让初学者也能轻松上手。 ... [详细]
author-avatar
_红裙子_Supreme
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有