热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python清洗字符串的实例详解

这篇文章主要介绍了python数据清洗之字符串处理的相关资料,需要的朋友可以参考下
这篇文章主要介绍了python数据清洗之字符串处理的相关资料,需要的朋友可以参考下

前言

数据清洗是一项复杂且繁琐(kubi)的工作,同时也是整个数据分析过程中最为重要的环节。有人说一个分析项目80%的时间都是在清洗数据,这听起来有些匪夷所思,但在实际的工作中确实如此。数据清洗的目的有两个,第一是通过清洗让数据可用。第二是让数据变的更适合进行后续的分析工作。换句话说就是有”脏”数据要洗,干净的数据也要洗。

在数据分析中,特别是文本分析中,字符处理需要耗费极大的精力,因而了解字符处理对于数据分析而言,也是一项很重要的能力。

字符串处理方法

首先我们先了解下都有哪些基础方法

首先我们了解下字符串的拆分split方法

str='i like apple,i like bananer'
print(str.split(','))

对字符str用逗号进行拆分的结果:

['i like apple', 'i like bananer']

print(str.split(' '))

根据空格拆分的结果:

['i', 'like', 'apple,i', 'like', 'bananer']

print(str.index(','))
print(str.find(','))

两个查找结果都为:

12

找不到的情况下index返回错误,find返回-1

print(str.count('i'))

结果为:

4

connt用于统计目标字符串的频率

print(str.replace(',', ' ').split(' '))

结果为:

['i', 'like', 'apple', 'i', 'like', 'bananer']

这里replace把逗号替换为空格后,在用空格对字符串进行分割,刚好能把每个单词取出来。

除了常规的方法以外,更强大的字符处理工具费正则表达式莫属了。

正则表达式

在使用正则表达式前我们还要先了解下,正则表达式中的诸多方法。

下面我来看下个方法的使用,首先了解下match和search方法的区别

str = "Cats are smarter than dogs"
pattern=re.compile(r'(.*) are (.*?) .*')
result=re.match(pattern,str)

for i in range(len(result.groups())+1):
 print(result.group(i))

结果为:

Cats are smarter than dogs
Cats
smarter

这种形式的pettern匹配规则下,match和search方法的的返回结果是一样的

此时如果把pattern改为

pattern=re.compile(r'are (.*?) .*')

match则返回none,search返回结果为:

are smarter than dogs
smarter

接下来我们了解下其他方法的使用

str = "138-9592-5592 # number"
pattern=re.compile(r'#.*$')
number=re.sub(pattern,'',str)
print(number)

结果为:

138-9592-5592

以上是通过把#号后面的内容替换为空实现提取号码的目的。

我们还可以进一步对号码的横杆进行替换

print(re.sub(r'-*','',number))

结果为:

13895925592

我们还可以用find的方法把找到的字符串打印出来

str = "138-9592-5592 # number"
pattern=re.compile(r'5')
print(pattern.findall(str))

结果为:

['5', '5', '5']

正则表达式的整体内容比较多,需要我们对匹配的字符串的规则有足够的了解,下面是具体的匹配规则。

矢量化字符串函数

清理待分析的散乱数据时,常常需要做一些字符串规整化工作。

data = pd.Series({'li': '120@qq.com','wang':'5632@qq.com',
 'chen': '8622@xinlang.com','zhao':np.nan,'sun':'5243@gmail.com'})
print(data)

结果为:

也可以对字符串进行分拆,把需要的字符串提取出来

data = pd.Series({'li': '120@qq.com','wang':'5632@qq.com',
     'chen': '8622@xinlang.com','zhao':np.nan,'sun':'5243@gmail.com'})
pattern=re.compile(r'(\d*)@([a-z]+)\.([a-z]{2,4})')
result=data.str.match(pattern) #这里用fillall的方法也可以result=data.str.findall(pattern)
print(result)

结果为:

chen [(8622, xinlang, com)]
li [(120, qq, com)]
sun [(5243, gmail, com)]
wang [(5632, qq, com)]
zhao NaN
dtype: object

此时加入我们需要提取邮箱前面的名称

print(result.str.get(0))

结果为:

当然也可以用切片的方式进行提取,不过提取的数据准确性不高

data = pd.Series({'li': '120@qq.com','wang':'5632@qq.com',
    'chen': '8622@xinlang.com','zhao':np.nan,'sun':'5243@gmail.com'})
print(data.str[:6])

结果为:

总结


推荐阅读
  • 本文详细探讨了在使用 Python 的 pip 工具安装包时遇到的 ReadTimeoutError 错误,并提供了有效的解决方案。 ... [详细]
  • Requests库的基本使用方法
    本文介绍了Python中Requests库的基础用法,包括如何安装、GET和POST请求的实现、如何处理Cookies和Headers,以及如何解析JSON响应。相比urllib库,Requests库提供了更为简洁高效的接口来处理HTTP请求。 ... [详细]
  • 在OpenCV 3.1.0中实现SIFT与SURF特征检测
    本文介绍如何在OpenCV 3.1.0版本中通过Python 2.7环境使用SIFT和SURF算法进行图像特征点检测。由于这些高级功能在OpenCV 3.0.0及更高版本中被移至额外的contrib模块,因此需要特别处理才能正常使用。 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • Jenkins API当前未直接提供获取任务构建队列长度的功能,因此需要通过解析HTML页面来间接实现这一需求。 ... [详细]
  • 深入体验Python的高级交互式Shell - IPython
    IPython 是一个增强型的 Python 交互式 Shell,提供了比标准 Python 控制台更为强大的功能,适用于开发和调试过程。它不仅支持直接执行 Linux 命令,还提供了丰富的特性来提高编程效率。 ... [详细]
  • Jupyter Notebook多语言环境搭建指南
    本文详细介绍了如何在Linux环境下为Jupyter Notebook配置Python、Python3、R及Go四种编程语言的环境,包括必要的软件安装和配置步骤。 ... [详细]
  • 本文介绍如何在阿里云环境中利用 Docker 容器化技术部署一个简单的 Flask Web 应用,并确保其可通过互联网访问。内容涵盖 Python 代码编写、Dockerfile 配置、镜像构建及容器运行等步骤。 ... [详细]
  • 6月2日,中央电化教育馆与潍坊科技学院联合举办的“全国创客教育专题培训班”在潍坊科技学院拉开帷幕,旨在提升全国范围内的创客教育水平。 ... [详细]
  • Python中Seaborn库的整体风格配置详解
    本文介绍了Seaborn,这是一个基于Matplotlib的Python数据可视化库,旨在简化统计图形的绘制过程。文章详细探讨了Seaborn的不同主题风格及其配置方法。 ... [详细]
  • 本文介绍了一种方法,通过使用Python的ctypes库来调用C++代码。具体实例为实现一个简单的加法器,并详细说明了从编写C++代码到编译及最终在Python中调用的全过程。 ... [详细]
  • 本文介绍如何使用JavaScript中的for循环来创建一个九九乘法表,适合初学者学习循环结构的应用。 ... [详细]
  • 随着技术的发展,Python因其高效性和灵活性,在多个领域得到了广泛应用,特别是在大数据处理和网络爬虫开发方面。本文将探讨学习Python是否能够胜任大数据和网络爬虫工程师的工作,并分析其职业前景。 ... [详细]
  • 高级缩放示例.就像谷歌地图一样.它仅缩放图块,但不缩放整个图像.因此,缩放的瓷砖占据了恒定的记忆,并且不会为大型缩放图像调整大小的图像.对于简化的缩放示例lookhere.在Win ... [详细]
  • PyCharm 安装与首个 Python 程序实践
    本文将指导您如何安装 PyCharm,并通过创建一个简单的 'Hello, World' 程序来初步体验这一强大的 Python 集成开发环境。 ... [详细]
author-avatar
落花飞雪277590089
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有