热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python+C、C++混合编程

TIOBE每个月都会新鲜出炉一份流行编程语言排行榜,这里会列出最流行的20种语言。排序说明不了语言的好坏,反应的不过是某个软件开发领域的热门程度。语言的发展不是越来越common,

python+C、C++混合编程

TIOBE每个月都会新鲜出炉一份流行编程语言排行榜,这里会列出最流行的20种语言。

排序说明不了语言的好坏,反应的不过是某个软件开发领域的热门程度。语言的发展不是越来越common,而是越来越专注领域。有的语言专注于简单高效,比如python,内建的list,dict结构比c/c++易用太多,但同样为了安全、易用,语言也牺牲了部分性能。

在有些领域,比如通信,性能很关键,但并不意味这个领域的coder只能苦苦挣扎于c/c++的陷阱中,比如可以使用多种语言混合编程。

我看到的一个很好的Python与c/c++混合编程的应用是NS3(Network Simulator3)一款网络模拟软件,它的内部计算引擎需要用高性能,但在用户建模部分需要灵活易用。NS3的选择是使用C/C++来模拟核心部件和协议,用python来建模和扩展。

这篇文章介绍python和c/c++三种混合编程的方法,并对性能加以分析。

混合编程的原理

首先要说一下python只是一个语言规范,实际上python有很多实现:CPython是标准Python,是由C编写的,python脚本被编译成CPython字节码,然后由虚拟机解释执行,垃圾回收使用引用计数,我们谈与C/C++混合编程实际指的是基于CPython解释上的。

除此之外,还有Jython、IronPython、PyPy、Pyston,Jython是Java编写的,使用JVM的垃圾回收,可以与Java混合编程,IronPython面向.NET平台。

python与C/C++混合编程的本质是python调用C/C++编译的动态链接库,关键就是把python中的数据类型转换成c/c++中的数据类型,给编译函数处理,然后返回参数再转换成python中的数据类型。

python中使用ctypes moduel,将python类型转成c/c++类型

首先,编写一段累加数值的c代码:

extern "C" 
{
    int addBuf(char* data, int num, char* outData);
}
int addBuf(char* data, int num, char* outData)
{
    for (int i = 0; i 

然后,将上面的代码编译成so库,使用下面的编译指令

>gcc -pthread -fno-strict-aliasing -g -O2 -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC addbuf.c -o addbuf.o

最后编写python代码,使用ctypes库,将python类型转换成c语言需要的类型,然后传参调用so库函数:

from ctypes import * # cdll, c_int
lib = cdll.LoadLibrary("libmathBuf.so")
callAddBuf = lib.addBuf
num = 4
numbytes = c_int(num)
data_in = (c_byte * num)()
for i in range(num):
    data_in[i] = i
data_out = (c_byte * num)()
ret = lib.addBuf(data_in, numbytes, data_out)   #调用so库中的函数

在C/C++程序中使用Python.h,写wrap包装接口

这种方法需要修改c/c++代码,在外部函数中处理入/出参,适配python的参数。写一段c代码将外部入参作为shell命令执行:

         #include 
static PyObject* SpamError;
static PyObject* spam_system(PyObject* self, PyObject* args)
{
        const char* command;
        int sts;
        if (!PyArg_ParseTuple(args, "s", &command))  //将args参数按照string类型处理,给command赋值
                return NULL;
        sts = system(command); //调用系统命令
        if (sts <0) {
                PyErr_SetString(SpamError, "System command failed");
                return NULL;
        }
        return PyLong_FromLong(sts);     //将返回结果转换为PyObject类型
}
//方法表
static PyMethodDef SpamMethods[] = {
        {"system", spam_system, METH_VARARGS,
        "Execute a shell command."},
        {NULL, NULL, 0, NULL}
};
//模块初始化函数
PyMODINIT_FUNC initspam(void)
{
        PyObject* m;
        //m = PyModule_Create(&spammodule); // v3.4
        m = Py_InitModule("spam", SpamMethods);
        if (m == NULL)
                return;
        SpamError = PyErr_NewException("spam.error",NULL,NULL);
        Py_INCREF(SpamError);
        PyModule_AddObject(m,"error",SpamError);
}

处理上所有的入参、出参都作为PyObject对象来处理,然后使用转换函数把python的数据类型转换成c/c++中的类型,返回参数按相同方式处理。比第一种方法多了初始化函数,这部分是把编译的so库当做python module所必需要做的。

python这样使用:

imoprt spam
spam.system("ls")

使用c/c++编写python扩展可以参见:http://docs.python.org/2.7/extending/extending.html

使用SWIG,来生成独立的wrap文件

这种方式并不能算是一种新方式,实际上是基于第二中方式的一种包装。SWIG是个帮助使用C或者C++编写的软件能与其它各种高级编程语言进行嵌入联接的开发工具。SWIG能应用于各种不同类型的语言包括常用脚本编译语言例如Perl, PHP, Python, Tcl, Ruby, PHP,C#,Java,R等。

操作上,是针对c/c++程序编写独立的接口声明文件(通常很简单),swig会分析c/c++源程序自动分析接口要如何包装。在指定目标语言后,swig会生成额外的包装源码文件。编译so库时,把包装文件一起编译、连接即可。看个c代码例子:

int system(const char* command)
{
        sts = system(command);
        if (sts <0) {
                return NULL;
        }
        return sts;
}

c源码中去掉适配python的包装,仅定义system函数本身,这比第二种方式简洁很多,并且剔除了c代码与python的耦合代码,是c代码通用性更好。

然后编写swig接口声明文件spam.i:

%module spam
%{
#include "spam.h"
%}
%include "spam.h"
%include "typemaps.i"
int system(const char* INPUT);

这是一段语言无关的模块声明,要创建一个叫spam的模块,对system做一个声明,主要是声明参数作为入参使用。然后执行swig编译程序:

>swig -c++ -python spam.i

swig会生成spam_wrap.cxx和spam.py两个文件。先看spam_wrap.cxx,这个生成的文件很长,但关键的就是对函数的包装:

file

包装函数传入的还是PyObejct对象,内部进行了类型转换,最终调了源码中的system函数。

生成的了另一个spam.py实际上是对so库又用python包装了一层(实际比较多余):

file

这里使用_spam模块,这里实际上是把扩展命名为了_spam。关于swig在python上的应用可以参见:http://www.swig.org/Doc1.3/Python.html

下面就是编译和安装python 模块,Python提供了distutils module,可以很方便的编译安装python的module。像下面这样写一个安装脚本setup.py:

file

执行 python setup.py build,即可以完成编译,程序会创建一个build目录,下面有编译好的so库。so库放在当前目录下,其实Python就可以通过import来加载模块了。

当然也可以用 python setup.py install 把模块安装到语言的扩展库——site-packages目录中。关于build python扩展,可以参考https://docs.python.org/2/extending/building.html#building

混合编程性能分析

混合编程的使用场景中,很重要一个就是性能攸关。那么这小节将通过几个小实验验证下混合编程的性能如何,或者说怎样写程序能发挥好混合编程的性能优势。

我们使用冒泡排序算法来验证性能。

1、实验一 使用冒泡程序验证python和c/c++程序的性能差距

python版冒泡程序:

def bubble(arr,length):
    j = length - 1
    while j >= 0:
        i = 0
        while i  arr[i+1]:
                tmp = arr[i+1]
                arr[i+1] = arr[i]
                arr[i] = tmp
            i += 1
        j -= 1

c语言版冒泡排序

void bubble(int* arr,int length){
    int j = length - 1;
    int i;
    int tmp;
    while(j >= 0){
        i = 0;
        while(i  arr[i+1]){
                tmp = arr[i+1];
                arr[i+1] = arr[i];
                arr[i] = tmp;
            }
            i += 1;
        }
        j -= 1;
    }
}

使用一个长度为100内容固定的数组,反复排序10000次(每次排序后,再把数组恢复成原始序列),记录执行时间:

在相同的机器上多次执行,Python版执行时间是10.3s左右,而c语言版本(未使用任何优化编译参数)执行时间只有0.29s左右。相比之下python的性能的确差很多(主要是python中list的操作跟c的数组相比,效率差非常多),但python中很多扩展都是c语言写的,目的就是为了提升效率,python用于数据分析的numpy库就拥有不错的性能。下个实验就验证,如果python使用c语言版本的冒泡排序扩展库,性能会提升多少。

2、实验二 python语言使用ctypes方式调用

这里直接使用c_int来定义了数组对象,这也节省了调用时数据类型转换的开销:

import time
from ctypes import *
IntArray100 = c_int * 100
arr = IntArray100(87,23,41, 3, 2, 9,10,23,0,21,5,15,93, 6,19,24,18,56,11,80,34, 5,98,33,11,25,99,44,33,78,
       52,31,77, 5,22,47,87,67,46,83, 89,72,34,69, 4,67,97,83,23,47, 69, 8, 9,90,20,58,20,13,61,99,7,22,55,11,30,56,87,29,92,67,
       99,16,14,51,66,88,24,31,23,42,76,37,82,10, 8, 9, 2,17,84,32,66,77,32,17, 5,68,86,22, 1, 0)
... ...
if __name__ == "__main__":
    libbubble = CDLL("libbubble.so")
    time1 = time.time()
    for i in xrange(100000):
        libbubble.initArr(arr1,arr,100)
        libbubble.bubble(arr1,100)
    time2 = time.time()
    print time2 - time1

再次执行:

为了减少误差,把循环增加到10万次,结果c原生程序使用优化参数编译后用时0.65s左右。python使用c扩展后(相同编译参数)执行仅需2.3s左右。

3、实验三 在c语言中使用PyObject处理入参

这种方式是在python中依然使用list装入待排序数列,在c函数中把list赋值给数组,再进行排序,排好序后,再对原始list赋值。循环排序10万次,执行用时1.0s左右。

4、实验四 使用swig来包装c方法

在接口文件中声明%array_class(int,intArray);然后在Python中使用initArray来作为数组,同样修改成10万次排序。python版本的程序(相同编译参数)执行仅需0.7s左右,比c原生程序慢大概7%。

结论

1.python 的list效率非常低,在高性能场景下避免对list大量循环、取值、赋值操作。如需要最好使用ctype中的数组,或者是用c语言来实现。

2.应该把耗时的cpu密集型的逻辑交给c/c++实现,python使用扩展即可。

原文链接: https://blog.51cto.com/12557234/2294219 文源网络,仅供学习之用,如有侵权,联系删除。

我将优质的技术文章和经验总结都汇集在了我的公众号【Python圈子】里。

在学习Python的道路上肯定会遇见困难,别慌,我这里有一套学习资料,包含40+本电子书,600+个教学视频,涉及Python基础、爬虫、框架、数据分析、机器学习等,不怕你学不会!还有学习交流群,一起学习进步~ file


推荐阅读
  • 2022年Python面试题一.Python基础二.企业面试题结束语🥇🥇🥇✅作者简介:大家好我是编程IDὌ ... [详细]
  • 2020年9月15日,Oracle正式发布了最新的JDK 15版本。本次更新带来了许多新特性,包括隐藏类、EdDSA签名算法、模式匹配、记录类、封闭类和文本块等。 ... [详细]
  • C#实现文件的压缩与解压
    2019独角兽企业重金招聘Python工程师标准一、准备工作1、下载ICSharpCode.SharpZipLib.dll文件2、项目中引用这个dll二、文件压缩与解压共用类 ... [详细]
  • 浅析python实现布隆过滤器及Redis中的缓存穿透原理_python
    本文带你了解了位图的实现,布隆过滤器的原理及Python中的使用,以及布隆过滤器如何应对Redis中的缓存穿透,相信你对布隆过滤 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 线程能否先以安全方式获取对象,再进行非安全发布? ... [详细]
  • 本指南从零开始介绍Scala编程语言的基础知识,重点讲解了Scala解释器REPL(读取-求值-打印-循环)的使用方法。REPL是Scala开发中的重要工具,能够帮助初学者快速理解和实践Scala的基本语法和特性。通过详细的示例和练习,读者将能够熟练掌握Scala的基础概念和编程技巧。 ... [详细]
  • 本文探讨了基于点集估算图像区域的Alpha形状算法在Python中的应用。通过改进传统的Delaunay三角剖分方法,该算法能够生成更加灵活和精确的形状轮廓,避免了单纯使用Delaunay三角剖分时可能出现的过大三角形问题。这种“模糊Delaunay三角剖分”技术不仅提高了形状的准确性,还增强了对复杂图像区域的适应能力。 ... [详细]
  • 在Python编程中,掌握高级技巧对于提升代码效率和可读性至关重要。本文重点探讨了生成器和迭代器的应用,这两种工具不仅能够优化内存使用,还能简化复杂数据处理流程。生成器通过按需生成数据,避免了大量数据加载对内存的占用,而迭代器则提供了一种优雅的方式来遍历集合对象。此外,文章还深入解析了这些高级特性的实际应用场景,帮助读者更好地理解和运用这些技术。 ... [详细]
  • 在Python中,可以通过导入 `this` 模块来优雅地展示“Python之禅”这一编程哲学。该模块会将这些指导原则以一种美观的方式输出到控制台。为了增加趣味性,可以考虑在代码中对输出内容进行简单的加密或混淆处理,以提升用户体验。 ... [详细]
  • 在Python 3环境中,当无法连接互联网时,可以通过下载离线模块包来实现模块的安装。具体步骤包括:首先从PyPI网站下载所需的模块包,然后将其传输到目标环境,并使用`pip install`命令进行本地安装。此方法不仅适用于单个模块,还支持依赖项的批量安装,确保开发环境的完整性和一致性。 ... [详细]
  • 基于PythonOCC库,本文探讨了如何实现对曲线边(TopoDS_Edge)进行等间距周长分割的分析方法及其应用。通过使用BRepGProp模块中的线性属性计算功能,我们能够精确地将曲线分割成多个等长段,从而为后续的几何建模和工程应用提供基础支持。该方法不仅提高了曲线处理的效率,还增强了模型的准确性和可靠性。 ... [详细]
  • 提升Python多环境管理效率:深入探索多Python Pip应用策略
    提升Python多环境管理效率:深入探索多Python Pip应用策略 ... [详细]
  • PyTorch 2.0来了!100%向后兼容,一行代码将训练提速76%!
    点击下方卡片,关注“CVer”公众号AICV重磅干货,第一时间送达点击进入—CV微信技术交流群转载自:机器之心PyTorch官方 ... [详细]
  • 在Python编程中,当遇到程序运行无响应的问题时,通常与计算资源的消耗有关。Python使用任意精度整数进行计算,这意味着在处理大数值运算时,如计算大指数值,系统可能会因为内存或CPU资源不足而变得缓慢,甚至没有反馈。此外,代码中的无限循环或递归调用也可能导致类似问题。建议检查代码逻辑,优化算法效率,并确保计算任务不会超出系统的处理能力。 ... [详细]
author-avatar
搁浅几世琉璃
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有