TIOBE每个月都会新鲜出炉一份流行编程语言排行榜,这里会列出最流行的20种语言。排序说明不了语言的好坏,反应的不过是某个软件开发领域的热门程度。语言的发展不是越来越common,
TIOBE每个月都会新鲜出炉一份流行编程语言排行榜,这里会列出最流行的20种语言。
排序说明不了语言的好坏,反应的不过是某个软件开发领域的热门程度。语言的发展不是越来越common,而是越来越专注领域。有的语言专注于简单高效,比如python,内建的list,dict结构比c/c++易用太多,但同样为了安全、易用,语言也牺牲了部分性能。
在有些领域,比如通信,性能很关键,但并不意味这个领域的coder只能苦苦挣扎于c/c++的陷阱中,比如可以使用多种语言混合编程。
我看到的一个很好的Python与c/c++混合编程的应用是NS3(Network Simulator3)一款网络模拟软件,它的内部计算引擎需要用高性能,但在用户建模部分需要灵活易用。NS3的选择是使用C/C++来模拟核心部件和协议,用python来建模和扩展。
这篇文章介绍python和c/c++三种混合编程的方法,并对性能加以分析。
混合编程的原理
首先要说一下python只是一个语言规范,实际上python有很多实现:CPython是标准Python,是由C编写的,python脚本被编译成CPython字节码,然后由虚拟机解释执行,垃圾回收使用引用计数,我们谈与C/C++混合编程实际指的是基于CPython解释上的。
除此之外,还有Jython、IronPython、PyPy、Pyston,Jython是Java编写的,使用JVM的垃圾回收,可以与Java混合编程,IronPython面向.NET平台。
python与C/C++混合编程的本质是python调用C/C++编译的动态链接库,关键就是把python中的数据类型转换成c/c++中的数据类型,给编译函数处理,然后返回参数再转换成python中的数据类型。
python中使用ctypes moduel,将python类型转成c/c++类型
首先,编写一段累加数值的c代码:
extern "C"
{
int addBuf(char* data, int num, char* outData);
}
int addBuf(char* data, int num, char* outData)
{
for (int i = 0; i
然后,将上面的代码编译成so库,使用下面的编译指令
>gcc -pthread -fno-strict-aliasing -g -O2 -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC addbuf.c -o addbuf.o
最后编写python代码,使用ctypes库,将python类型转换成c语言需要的类型,然后传参调用so库函数:
from ctypes import * # cdll, c_int
lib = cdll.LoadLibrary("libmathBuf.so")
callAddBuf = lib.addBuf
num = 4
numbytes = c_int(num)
data_in = (c_byte * num)()
for i in range(num):
data_in[i] = i
data_out = (c_byte * num)()
ret = lib.addBuf(data_in, numbytes, data_out) #调用so库中的函数
在C/C++程序中使用Python.h,写wrap包装接口
这种方法需要修改c/c++代码,在外部函数中处理入/出参,适配python的参数。写一段c代码将外部入参作为shell命令执行:
#include
static PyObject* SpamError;
static PyObject* spam_system(PyObject* self, PyObject* args)
{
const char* command;
int sts;
if (!PyArg_ParseTuple(args, "s", &command)) //将args参数按照string类型处理,给command赋值
return NULL;
sts = system(command); //调用系统命令
if (sts <0) {
PyErr_SetString(SpamError, "System command failed");
return NULL;
}
return PyLong_FromLong(sts); //将返回结果转换为PyObject类型
}
//方法表
static PyMethodDef SpamMethods[] = {
{"system", spam_system, METH_VARARGS,
"Execute a shell command."},
{NULL, NULL, 0, NULL}
};
//模块初始化函数
PyMODINIT_FUNC initspam(void)
{
PyObject* m;
//m = PyModule_Create(&spammodule); // v3.4
m = Py_InitModule("spam", SpamMethods);
if (m == NULL)
return;
SpamError = PyErr_NewException("spam.error",NULL,NULL);
Py_INCREF(SpamError);
PyModule_AddObject(m,"error",SpamError);
}
处理上所有的入参、出参都作为PyObject对象来处理,然后使用转换函数把python的数据类型转换成c/c++中的类型,返回参数按相同方式处理。比第一种方法多了初始化函数,这部分是把编译的so库当做python module所必需要做的。
python这样使用:
imoprt spam
spam.system("ls")
使用c/c++编写python扩展可以参见:http://docs.python.org/2.7/extending/extending.html
使用SWIG,来生成独立的wrap文件
这种方式并不能算是一种新方式,实际上是基于第二中方式的一种包装。SWIG是个帮助使用C或者C++编写的软件能与其它各种高级编程语言进行嵌入联接的开发工具。SWIG能应用于各种不同类型的语言包括常用脚本编译语言例如Perl, PHP, Python, Tcl, Ruby, PHP,C#,Java,R等。
操作上,是针对c/c++程序编写独立的接口声明文件(通常很简单),swig会分析c/c++源程序自动分析接口要如何包装。在指定目标语言后,swig会生成额外的包装源码文件。编译so库时,把包装文件一起编译、连接即可。看个c代码例子:
int system(const char* command)
{
sts = system(command);
if (sts <0) {
return NULL;
}
return sts;
}
c源码中去掉适配python的包装,仅定义system函数本身,这比第二种方式简洁很多,并且剔除了c代码与python的耦合代码,是c代码通用性更好。
然后编写swig接口声明文件spam.i:
%module spam
%{
#include "spam.h"
%}
%include "spam.h"
%include "typemaps.i"
int system(const char* INPUT);
这是一段语言无关的模块声明,要创建一个叫spam的模块,对system做一个声明,主要是声明参数作为入参使用。然后执行swig编译程序:
>swig -c++ -python spam.i
swig会生成spam_wrap.cxx和spam.py两个文件。先看spam_wrap.cxx,这个生成的文件很长,但关键的就是对函数的包装:
包装函数传入的还是PyObejct对象,内部进行了类型转换,最终调了源码中的system函数。
生成的了另一个spam.py实际上是对so库又用python包装了一层(实际比较多余):
这里使用_spam模块,这里实际上是把扩展命名为了_spam。关于swig在python上的应用可以参见:http://www.swig.org/Doc1.3/Python.html
下面就是编译和安装python 模块,Python提供了distutils module,可以很方便的编译安装python的module。像下面这样写一个安装脚本setup.py:
执行 python setup.py build,即可以完成编译,程序会创建一个build目录,下面有编译好的so库。so库放在当前目录下,其实Python就可以通过import来加载模块了。
当然也可以用 python setup.py install 把模块安装到语言的扩展库——site-packages目录中。关于build python扩展,可以参考https://docs.python.org/2/extending/building.html#building
混合编程性能分析
混合编程的使用场景中,很重要一个就是性能攸关。那么这小节将通过几个小实验验证下混合编程的性能如何,或者说怎样写程序能发挥好混合编程的性能优势。
我们使用冒泡排序算法来验证性能。
1、实验一 使用冒泡程序验证python和c/c++程序的性能差距
python版冒泡程序:
def bubble(arr,length):
j = length - 1
while j >= 0:
i = 0
while i arr[i+1]:
tmp = arr[i+1]
arr[i+1] = arr[i]
arr[i] = tmp
i += 1
j -= 1
c语言版冒泡排序
void bubble(int* arr,int length){
int j = length - 1;
int i;
int tmp;
while(j >= 0){
i = 0;
while(i arr[i+1]){
tmp = arr[i+1];
arr[i+1] = arr[i];
arr[i] = tmp;
}
i += 1;
}
j -= 1;
}
}
使用一个长度为100内容固定的数组,反复排序10000次(每次排序后,再把数组恢复成原始序列),记录执行时间:
在相同的机器上多次执行,Python版执行时间是10.3s左右,而c语言版本(未使用任何优化编译参数)执行时间只有0.29s左右。相比之下python的性能的确差很多(主要是python中list的操作跟c的数组相比,效率差非常多),但python中很多扩展都是c语言写的,目的就是为了提升效率,python用于数据分析的numpy库就拥有不错的性能。下个实验就验证,如果python使用c语言版本的冒泡排序扩展库,性能会提升多少。
2、实验二 python语言使用ctypes方式调用
这里直接使用c_int来定义了数组对象,这也节省了调用时数据类型转换的开销:
import time
from ctypes import *
IntArray100 = c_int * 100
arr = IntArray100(87,23,41, 3, 2, 9,10,23,0,21,5,15,93, 6,19,24,18,56,11,80,34, 5,98,33,11,25,99,44,33,78,
52,31,77, 5,22,47,87,67,46,83, 89,72,34,69, 4,67,97,83,23,47, 69, 8, 9,90,20,58,20,13,61,99,7,22,55,11,30,56,87,29,92,67,
99,16,14,51,66,88,24,31,23,42,76,37,82,10, 8, 9, 2,17,84,32,66,77,32,17, 5,68,86,22, 1, 0)
... ...
if __name__ == "__main__":
libbubble = CDLL("libbubble.so")
time1 = time.time()
for i in xrange(100000):
libbubble.initArr(arr1,arr,100)
libbubble.bubble(arr1,100)
time2 = time.time()
print time2 - time1
再次执行:
为了减少误差,把循环增加到10万次,结果c原生程序使用优化参数编译后用时0.65s左右。python使用c扩展后(相同编译参数)执行仅需2.3s左右。
3、实验三 在c语言中使用PyObject处理入参
这种方式是在python中依然使用list装入待排序数列,在c函数中把list赋值给数组,再进行排序,排好序后,再对原始list赋值。循环排序10万次,执行用时1.0s左右。
4、实验四 使用swig来包装c方法
在接口文件中声明%array_class(int,intArray);然后在Python中使用initArray来作为数组,同样修改成10万次排序。python版本的程序(相同编译参数)执行仅需0.7s左右,比c原生程序慢大概7%。
结论
1.python 的list效率非常低,在高性能场景下避免对list大量循环、取值、赋值操作。如需要最好使用ctype中的数组,或者是用c语言来实现。
2.应该把耗时的cpu密集型的逻辑交给c/c++实现,python使用扩展即可。
原文链接:
https://blog.51cto.com/12557234/2294219
文源网络,仅供学习之用,如有侵权,联系删除。
我将优质的技术文章和经验总结都汇集在了我的公众号【Python圈子】里。
在学习Python的道路上肯定会遇见困难,别慌,我这里有一套学习资料,包含40+本电子书,600+个教学视频,涉及Python基础、爬虫、框架、数据分析、机器学习等,不怕你学不会!还有学习交流群,一起学习进步~