热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

详解Python中使用最小二乘法方法

之所以说”使用”而不是”实现”,是因为python的相关类库已经帮我们实现了具体算法,而我们只要学会使用就可以了。随着对技术的逐渐掌握及积累,当类库中的算法已经无法满足自身需求的时候,我们也可以尝试通过自己的方式实现各种算法。
之所以说”使用”而不是”实现”,是因为python的相关类库已经帮我们实现了具体算法,而我们只要学会使用就可以了。随着对技术的逐渐掌握及积累,当类库中的算法已经无法满足自身需求的时候,我们也可以尝试通过自己的方式实现各种算法。

言归正传,什么是”最小二乘法”呢?

定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。

作用:利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

原则:以”残差平方和最小”确定直线位置(在数理统计中,残差是指实际观察值与估计值之间的差)

基本思路:对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn),对于平面中的这n个点,可以使用无数条曲线来拟合。而线性回归就是要求样本回归函数尽可能好地拟合这组值,也就是说,这条直线应该尽可能的处于样本数据的中心位置。因此,选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。

实现代码如下,代码中已经详细的给了注释:

##最小二乘法
import numpy as np   ##科学计算库 
import scipy as sp   ##在numpy基础上实现的部分算法库
import matplotlib.pyplot as plt  ##绘图库
from scipy.optimize import leastsq  ##引入最小二乘法算法

'''
     设置样本数据,真实数据需要在这里处理
'''
##样本数据(Xi,Yi),需要转换成数组(列表)形式
Xi=np.array([6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2])
Yi=np.array([5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3])

'''
    设定拟合函数和偏差函数
    函数的形状确定过程:
    1.先画样本图像
    2.根据样本图像大致形状确定函数形式(直线、抛物线、正弦余弦等)
'''

##需要拟合的函数func :指定函数的形状
def func(p,x):
    k,b=p
    return k*x+b

##偏差函数:x,y都是列表:这里的x,y更上面的Xi,Yi中是一一对应的
def error(p,x,y):
    return func(p,x)-y

'''
    主要部分:附带部分说明
    1.leastsq函数的返回值tuple,第一个元素是求解结果,第二个是求解的代价值(个人理解)
    2.官网的原话(第二个值):Value of the cost function at the solution
    3.实例:Para=>(array([ 0.61349535,  1.79409255]), 3)
    4.返回值元组中第一个值的数量跟需要求解的参数的数量一致
'''

#k,b的初始值,可以任意设定,经过几次试验,发现p0的值会影响cost的值:Para[1]
p0=[1,20]

#把error函数中除了p0以外的参数打包到args中(使用要求)
Para=leastsq(error,p0,args=(Xi,Yi))

#读取结果
k,b=Para[0]
print("k=",k,"b=",b)
print("cost:"+str(Para[1]))
print("求解的拟合直线为:")
print("y="+str(round(k,2))+"x+"+str(round(b,2)))

'''
   绘图,看拟合效果.
   matplotlib默认不支持中文,label设置中文的话需要另行设置
   如果报错,改成英文就可以
'''

#画样本点
plt.figure(figsize=(8,6)) ##指定图像比例: 8:6
plt.scatter(Xi,Yi,color="green",label="样本数据",linewidth=2) 

#画拟合直线
x=np.linspace(0,12,100) ##在0-15直接画100个连续点
y=k*x+b ##函数式
plt.plot(x,y,color="red",label="拟合直线",linewidth=2) 
plt.legend() #绘制图例
plt.show()

结果如下所示:

输出结果:

k= 0.900458420439 b= 0.831055638877
cost:1
求解的拟合直线为:
y=0.9x+0.83

绘图结果:

以上就是详解Python中使用最小二乘法方法的详细内容,更多请关注 第一PHP社区 其它相关文章!


推荐阅读
  • 最适合初学者的编程语言
    本文探讨了适合编程新手的最佳语言选择,包括Python、JavaScript等易于上手且功能强大的语言,以及如何通过有效的学习方法提高编程技能。 ... [详细]
  • 变量间相关性分析
    本文探讨了如何通过统计方法评估两个变量之间的关系强度,重点介绍了皮尔森相关系数的计算及其应用。除了数学公式外,文章还提供了Python编程实例,展示如何利用实际数据集(如泰坦尼克号乘客数据)进行相关性检验。 ... [详细]
  • 网络流24题——试题库问题
    题目描述:假设一个试题库中有n道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取m道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算 ... [详细]
  • 本文介绍了如何利用OpenCV库进行图像的边缘检测,并通过Canny算法提取图像中的边缘。随后,文章详细说明了如何识别图像中的特定形状(如矩形),并应用四点变换技术对目标区域进行透视校正。 ... [详细]
  • 本文介绍了如何通过安装 sqlacodegen 和 pymysql 来根据现有的 MySQL 数据库自动生成 ORM 的模型文件(model.py)。此方法适用于需要快速搭建项目模型层的情况。 ... [详细]
  • H5技术实现经典游戏《贪吃蛇》
    本文将分享一个使用HTML5技术实现的经典小游戏——《贪吃蛇》。通过H5技术,我们将探讨如何构建这款游戏的两种主要玩法:积分闯关和无尽模式。 ... [详细]
  • 本文介绍了多维缩放(MDS)技术,这是一种将高维数据映射到低维空间的方法,通过保持原始数据间的关系,以便于可视化和分析。文章详细描述了MDS的原理和实现过程,并提供了Python代码示例。 ... [详细]
  • TCP协议中的可靠传输机制分析
    本文深入探讨了TCP协议如何通过滑动窗口和超时重传来确保数据传输的可靠性,同时介绍了流量控制和拥塞控制的基本原理及其在实际网络通信中的应用。 ... [详细]
  • 对于初学者而言,搭建一个高效稳定的 Python 开发环境是入门的关键一步。本文将详细介绍如何利用 Anaconda 和 Jupyter Notebook 来构建一个既易于管理又功能强大的开发环境。 ... [详细]
  • 2023年,Android开发前景如何?25岁还能转行吗?
    近期,关于Android开发行业的讨论在多个平台上热度不减,许多人担忧其未来发展。本文将探讨当前Android开发市场的现状、薪资水平及职业选择建议。 ... [详细]
  • 软件测试行业深度解析:迈向高薪的必经之路
    本文深入探讨了软件测试行业的发展现状及未来趋势,旨在帮助有志于在该领域取得高薪的技术人员明确职业方向和发展路径。 ... [详细]
  • 如何在PyCharm中配置Python脚本的默认模板
    本文介绍如何在PyCharm中设置Python脚本的默认模板,以便每次创建新的.py文件时自动填充预设内容,提高开发效率。 ... [详细]
  • 本文对宋代著名诗人吕渭老的作品《情久长》进行了细致的翻译和赏析,深入探讨了诗中蕴含的情感与艺术特色。 ... [详细]
  • 本文详细介绍如何安装和配置DedeCMS的移动端站点,包括新版本安装、老版本升级、模板适配以及必要的代码修改,以确保移动站点的正常运行。 ... [详细]
  • 本文提供了一种通过调整内核电压来增强设备抗干扰能力的方法,以解决部分杰里AC696X设备在LDO15模式下通话时出现的重启问题。 ... [详细]
author-avatar
南阳啸68
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有