热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python入门级识别验证码

本文讲解了如何用python识别验证码
前情:这篇文章所提及的内容是博主上个暑假时候做的,一直没有沉下心来把自己的心得写在纸面上,所幸这个假期闲暇时候比较多,想着能写多少是多少,于是就有了此篇。

验证码?我也能破解?

关于验证码的介绍就不多说了,各种各样的验证码在人们生活中时不时就会冒出来,博主身为东北大学的学生,日常接触最多的就是教务处系统的验证码了。
东大的验证码一直被学生吐槽,太难输入了,不仅区分大小写,有些时候你明明输入正确了,却提示出错,而这个时候 禁止你的左键复制 也许该弹出来了。
(不过16-17学年度教务处更改了验证码的内容,更方便人类操作了。)

可以看出教务处的验证码十分有规律,每个字母数字的大小位置形状等等都是固定的,这正适合毫无基础的初学者进行验证码的识别。

识别办法

模拟登陆有着复杂的步骤,在这里咱们不管其他操作,只负责根据输入的一张验证码图片返回一个答案字符串。

我们知道验证码为了制作干扰,会把图片弄成五颜六色的样子,而我们首先就是要去除这些干扰,这一步就需要不断试验了,增强图片色彩,加大对比度等等都可以产生帮助。

在经过各种对图片的操作之后,终于找到了比较完美的去除干扰方案。可以看到在去除干扰之后,最优情况下,我们将得到一张十分纯净的黑白字符图片。一张图片上有四个字符,没办法一下子就把四个字符全部识别,需要把图片进行裁剪,裁剪成每张小图只有一个字符的样子,再对每张图片分别进行识别。

接下来就是识别文字了,我们首先把得到的小图转换成01表示的矩阵,每个矩阵代表一个字符。
比如数字六的矩阵

num_6=[
0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,1,0,0,0,0,0,0,
0,0,0,0,1,1,1,0,0,0,0,0,0,
0,0,0,1,1,1,0,0,0,0,0,0,0,
0,0,0,1,1,0,0,0,0,0,0,0,0,
0,0,1,1,0,0,0,0,0,0,0,0,0,
0,0,1,1,0,0,0,0,0,0,0,0,0,
0,1,1,1,1,1,1,1,0,0,0,0,0,
0,1,1,1,1,1,1,1,1,0,0,0,0,
0,1,1,0,0,0,0,1,1,1,0,0,0,
0,1,1,0,0,0,0,0,1,1,0,0,0,
0,1,1,0,0,0,0,0,1,1,0,0,0,
0,1,1,1,0,0,0,1,1,1,0,0,0,
0,0,1,1,1,1,1,1,1,0,0,0,0,
0,0,0,1,1,1,1,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,
]

远远望过去,眯着眼睛还是能分辨出来的。
因为东大教务处的验证码十分规整,每个数字所在的位置都是固定的,所以并不需要涉及什么机器学习的算法,只是简单的进行一下矩阵的比对就可以了,在所有的实现做好的矩阵中找到相似度最高的矩阵就可以了,在这里的比对方法多种多样,反正数据简单能正确识别出来就好。

至此,咱们的验证码识别工作就结束了。

小结

这次进行的验证码识别主要采用python的PIL进行图片操作,模拟登陆自动填写验证码的全部代码请看

xfangfang’s Github

以上就是python入门级识别验证码的详细内容,更多请关注 第一PHP社区 其它相关文章!


推荐阅读
  • 【小白学习C++ 教程】二十三、如何安装和使用 C++ 标准库
    【小白学习C++ 教程】二十三、如何安装和使用 C++ 标准库 ... [详细]
  • AI炼金术:KNN分类器的构建与应用
    本文介绍了如何使用Python及其相关库(如NumPy、scikit-learn和matplotlib)构建KNN分类器模型。通过详细的数据准备、模型训练及新样本预测的过程,展示KNN算法的实际操作步骤。 ... [详细]
  • 本文分享了作者在使用LaTeX过程中的几点心得,涵盖了从文档编辑、代码高亮、图形绘制到3D模型展示等多个方面的内容。适合希望深入了解LaTeX高级功能的用户。 ... [详细]
  • 本文提供了一个详尽的前端开发资源列表,涵盖了从基础入门到高级应用的各个方面,包括HTML5、CSS3、JavaScript框架及库、移动开发、API接口、工具与插件等。 ... [详细]
  • 本文回顾了作者在求职阿里和腾讯实习生过程中,从最初的迷茫到最后成功获得Offer的心路历程。文中不仅分享了个人的面试经历,还提供了宝贵的面试准备建议和技巧。 ... [详细]
  • Python3爬虫入门:pyspider的基本使用[python爬虫入门]
    Python学习网有大量免费的Python入门教程,欢迎大家来学习。本文主要通过爬取去哪儿网的旅游攻略来给大家介绍pyspid ... [详细]
  • 对于初学者而言,搭建一个高效稳定的 Python 开发环境是入门的关键一步。本文将详细介绍如何利用 Anaconda 和 Jupyter Notebook 来构建一个既易于管理又功能强大的开发环境。 ... [详细]
  • 2023年,Android开发前景如何?25岁还能转行吗?
    近期,关于Android开发行业的讨论在多个平台上热度不减,许多人担忧其未来发展。本文将探讨当前Android开发市场的现状、薪资水平及职业选择建议。 ... [详细]
  • 我的读书清单(持续更新)201705311.《一千零一夜》2006(四五年级)2.《中华上下五千年》2008(初一)3.《鲁滨孙漂流记》2008(初二)4.《钢铁是怎样炼成的》20 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 深入解析层次聚类算法
    本文详细介绍了层次聚类算法的基本原理,包括其通过构建层次结构来分类样本的特点,以及自底向上(凝聚)和自顶向下(分裂)两种主要的聚类策略。文章还探讨了不同距离度量方法对聚类效果的影响,并提供了具体的参数设置指导。 ... [详细]
  • 机器学习(ML)三之多层感知机
    深度学习主要关注多层模型,现在以多层感知机(multilayerperceptron,MLP)为例,介绍多层神经网络的概念。隐藏层多层感知机在单层神经网络的基础上引入了一到多个隐藏 ... [详细]
  • 【转】强大的矩阵奇异值分解(SVD)及其应用
    在工程实践中,经常要对大矩阵进行计算,除了使用分布式处理方法以外,就是通过理论方法,对矩阵降维。一下文章,我在 ... [详细]
  • 分享两个GitHub链接,今天看到的,超赞超赞不能更赞了,答应我一定要去看好吗~~~~不论是笔记还是github中分享的其它资源ÿ ... [详细]
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
author-avatar
果子露强逼_604
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有