热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

一览众山小:OpenCV2.4.8组件结构全解析

【原文:blog.csdn.netpoem_qianmoarticledetails19925819】文章链接:blog.csdn.netpoem_qianmoarticledetails19925819作者:毛星云(浅墨)邮箱:happylifemxy@163.com写作当前博文时配套使用OpenCV版本:2.4.8之前啃了不少Op

【原文:http://blog.csdn.net/poem_qianmo/article/details/19925819】 文章链接: http://blog.csdn.net/poem_qianmo/article/details/19925819 作者:毛星云(浅墨)邮箱: happylifemxy@163.com 写作当前博文时配套使用OpenCV版本:2.4.8 之前啃了不少Op

【原文:http://blog.csdn.net/poem_qianmo/article/details/19925819】

文章链接: http://blog.csdn.net/poem_qianmo/article/details/19925819

作者:毛星云(浅墨) 邮箱: happylifemxy@163.com

写作当前博文时配套使用OpenCV版本:2.4.8

之前啃了不少OpenCV的官方文档,发现如果了解了一些OpenCV整体的模块架构后,再重点学习自己感兴趣的部分的话,就会有一览众山小的感觉,于是,就决定写出这篇文章,作为启程OpenCV系列博文的第二篇。

至于OpenCV组件结构的研究方法,我们不妨管中窥豹,通过opencv安装路径下include目录里面头文件的分类存放,来一窥OpenCV这些年迅猛发展起来的庞杂组件架构。

我们进入到D:\ProgramFiles\opencv\build\include目录,可以看到有opencv和opencv2这两个文件夹。显然,opencv这个文件夹里面包含着旧版的头文件。而opencv2这个文件夹里面包含着具有时代意义的新版OpenCV2系列的头文件。

在opencv这个文件夹里面,也就是D:\Program Files\opencv\build\include\opencv目录下,可以看到如下的各种头文件。这里面大概就是opencv 1.0最核心的,而且保留下来的内容的头文件,可以把它们整体理解为一个组件。


再来看看我们重点关注的opencv2这边,在D:\ProgramFiles\opencv\build\include\opencv2目录下,我们可以看到这些文件夹:




我们灵机一动,发现下面有个叫opencv_modules.hpp的hpp文件,一看就知道里面存放的是opencv2中的新模块构造相关的说明代码,打开一看,果不其然,定义的是OpenCV2所有组件的宏:


[cpp] view plaincopyprint?

  1. /*
  2. * ** File generated automatically, do not modify **
  3. *
  4. *This file defines the list of modules available in current build configuration
  5. *
  6. *
  7. */
  8. #define HAVE_OPENCV_CALIB3D
  9. #define HAVE_OPENCV_CONTRIB
  10. #define HAVE_OPENCV_CORE
  11. #define HAVE_OPENCV_FEATURES2D
  12. #define HAVE_OPENCV_FLANN
  13. #define HAVE_OPENCV_GPU
  14. #define HAVE_OPENCV_HIGHGUI
  15. #define HAVE_OPENCV_IMGPROC
  16. #define HAVE_OPENCV_LEGACY
  17. #define HAVE_OPENCV_ML
  18. #define HAVE_OPENCV_NONFREE
  19. #define HAVE_OPENCV_OBJDETECT
  20. #define HAVE_OPENCV_OCL
  21. #define HAVE_OPENCV_PHOTO
  22. #define HAVE_OPENCV_STITCHING
  23. #define HAVE_OPENCV_SUPERRES
  24. #define HAVE_OPENCV_TS
  25. #define HAVE_OPENCV_VIDEO
  26. #define HAVE_OPENCV_VIDEOSTAB


OK,就不多客套了,下面就是OpenCV的所有模块介绍,按照顺序来:

【calib3d】——其实就是就是Calibration(校准)加3D这两个词的组合缩写。这个模块主要是相机校准和三维重建相关的内容。基本的多视角几何算法,单个立体摄像头标定,物体姿态估计,立体相似性算法,3D信息的重建等等。

【contrib】——也就是Contributed/Experimental Stuf的缩写, 该模块包含了一些最近添加的不太稳定的可选功能,不用去多管。2.4.8里的这个模块有新型人脸识别,立体匹配,人工视网膜模型等技术。

【core】——核心功能模块,包含如下内容:

  • OpenCV基本数据结构
  • 动态数据结构
  • 绘图函数
  • 数组操作相关函数
  • 辅助功能与系统函数和宏
  • 与OpenGL的互操作


【imgproc——Image和Processing这两个单词的缩写组合。图像处理模块,这个模块包含了如下内容:

  • 线性和非线性的图像滤波
  • 图像的几何变换
  • 其它(Miscellaneous)图像转换
  • 直方图相关
  • 结构分析和形状描述
  • 运动分析和对象跟踪
  • 特征检测
  • 目标检测等内容

【features2d】 ——也就是Features2D, 2D功能框架 ,包含如下内容:

  • 特征检测和描述
  • 特征检测器(Feature Detectors)通用接口
  • 描述符提取器(Descriptor Extractors)通用接口
  • 描述符匹配器(Descriptor Matchers)通用接口
  • 通用描述符(Generic Descriptor)匹配器通用接口
  • 关键点绘制函数和匹配功能绘制函数


【flann】—— Fast Library for Approximate Nearest Neighbors,高维的近似近邻快速搜索算法库,包含两个部分:

  • 快速近似最近邻搜索
  • 聚类

【gpu】——运用GPU加速的计算机视觉模块

【highgui】——也就是high gui,高层GUI图形用户界面,包含媒体的I / O输入输出,视频捕捉、图像和视频的编码解码、图形交互界面的接口等内容

【legacy】——一些已经废弃的代码库,保留下来作为向下兼容,包含如下相关的内容:

  • 运动分析
  • 期望最大化
  • 直方图
  • 平面细分(C API)
  • 特征检测和描述(Feature Detection and Description)
  • 描述符提取器(Descriptor Extractors)的通用接口
  • 通用描述符(Generic Descriptor Matchers)的常用接口
  • 匹配器

【ml】——Machine Learning,机器学习模块, 基本上是统计模型和分类算法,包含如下内容:

  • 统计模型 (Statistical Models)
  • 一般贝叶斯分类器 (Normal Bayes Classifier)
  • K-近邻 (K-NearestNeighbors)
  • 支持向量机 (Support Vector Machines)
  • 决策树 (Decision Trees)
  • 提升(Boosting)
  • 梯度提高树(Gradient Boosted Trees)
  • 随机树 (Random Trees)
  • 超随机树 (Extremely randomized trees)
  • 期望最大化 (Expectation Maximization)
  • 神经网络 (Neural Networks)
  • MLData

【nonfree】,也就是一些具有专利的算法模块 ,包含特征检测和GPU相关的内容。最好不要商用,可能会被告哦。

【objdetect】——目标检测模块,包含Cascade Classification(级联分类)和Latent SVM这两个部分。

【ocl】——即OpenCL-accelerated Computer Vision,运用OpenCL加速的计算机视觉组件模块

【photo】——也就是Computational Photography,包含图像修复和图像去噪两部分

【stitching】——images stitching,图像拼接模块,包含如下部分:

  • 拼接流水线
  • 特点寻找和匹配图像
  • 估计旋转
  • 自动校准
  • 图片歪斜
  • 接缝估测
  • 曝光补偿
  • 图片混合

【superres】——SuperResolution,超分辨率技术的相关功能模块

【ts】——opencv测试相关代码,不用去管他

【video】——视频分析组件,该模块包括运动估计,背景分离,对象跟踪等视频处理相关内容。

【Videostab】——Video stabilization,视频稳定相关的组件,官方文档中没有多作介绍,不管它了。


看到到这里,相信大家已经对OpenCV的模块架构设计有了一定的认识。

OpenCV其实就是这么多模块作为代码容器组合起来的一个SDK而已,没什么稀奇的,对吧。

最后配张图,养养眼:



好了,OpenCV的组件结构介绍大概就是这些。

下篇文章见 :)


推荐阅读
  • 本文详细记录了作者从7月份的提前批到9、10月份正式批的秋招经历,包括各公司的面试流程、技术问题及HR面的常见问题。通过这次秋招,作者深刻体会到了技术积累和面试准备的重要性。 ... [详细]
  • 强人工智能时代,区块链的角色与前景
    随着强人工智能的崛起,区块链技术在新的技术生态中扮演着怎样的角色?本文探讨了区块链与强人工智能之间的互补关系及其在未来技术发展中的重要性。 ... [详细]
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 李宏毅机器学习笔记:无监督学习之线性方法
    无监督学习主要涵盖两大类别:一是聚类与降维,旨在简化数据结构;二是生成模型,用于从编码生成新的数据样本。本文深入探讨了这些技术的具体应用和理论基础。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 大数据时代的机器学习:人工特征工程与线性模型的局限
    本文探讨了在大数据背景下,人工特征工程与线性模型的应用及其局限性。随着数据量的激增和技术的进步,传统的特征工程方法面临挑战,文章提出了未来发展的可能方向。 ... [详细]
  • 京东AI创新之路:周伯文解析京东AI战略的独特之处
    2018年4月15日,京东在北京举办了人工智能创新峰会,会上首次公开了京东AI的整体布局和发展方向。此次峰会不仅展示了京东在AI领域的最新成果,还标志着京东AI团队的首次集体亮相。本文将深入探讨京东AI的发展策略及其与BAT等公司的不同之处。 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 全面解读Apache Flink的核心架构与优势
    Apache Flink作为大数据处理领域的新兴力量,凭借其独特的流处理能力和高效的批处理性能,迅速获得了广泛的关注。本文旨在深入探讨Flink的关键技术特点及其应用场景,为大数据处理提供新的视角。 ... [详细]
  • 初探K近邻算法与Scikit-learn API
    本文介绍了Scikit-learn这一强大的机器学习库,重点探讨了其最新稳定版本及其安装方法,并通过一个简单的K近邻算法实例展示了如何使用Scikit-learn进行模型训练和预测。 ... [详细]
  • 我的新书已正式上市,可在当当和京东购买。如果您喜欢本书,欢迎留下宝贵评价。本书历时3至4年完成,内容涵盖MySQL的安装、配置、开发、测试、监控和运维等方面,旨在帮助读者系统地学习MySQL。 ... [详细]
  • 机器学习算法(五)—— 最优化方法:梯度下降
    一、什么是梯度下降梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(GradientDescent ... [详细]
author-avatar
田景撩人_108
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有