热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

hive存储格式

hive文件的存储式:textfile、sequencefile、rcfile、自定义式1.textfiletextfile,即是文本式,默认式,数据不做压缩,磁盘开销大,数据解析开销大对应hiveAPI为org.apache.hadoop.mapred.TextInputFormat和org.apache.hadoop.hive.ql.io.HiveI

hive文件的存储式 :textfile、sequencefile、 rcfile、 自定义式 1 . textfile textfile, 即是文本式,默认式,数据不做压缩,磁盘开销大,数据解析开销大 对应hive API为 org.apache.hadoop.mapred.TextInputFormat 和 org.apache.hadoop.hive.ql.io.HiveI

hive文件的存储格式:textfile、sequencefile、rcfile、自定义格式

1. textfile
textfile,
即是文本格式,默认格式,数据不做压缩,磁盘开销大,数据解析开销大

对应hive API为org.apache.hadoop.mapred.TextInputFormatorg.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

2.sequencefile
sequencefile,是Hadoop提供的一种二进制文件格式是Hadoop支持的标准文件格式(其他生态系统并不适用),
可以直接将
对序列化到文件中,所以sequencefile文件不能直接查看,可以通过Hadoop fs -text查看。
具有使用方便,可分割,可压缩,可进行切片。压缩支持
NONE, RECORD, BLOCK(优先)等格式,可进行切片。

对应hive API为org.apache.hadoop.mapred.SequenceFileInputFormat和org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

3.rcfile
大多数的
Hadoophive存储是行式储存,在大多数环境下比较高效,因为大多数表具有的字段个数都不会很大,
且文件按块压缩对于需要处理重复数据的情况比较高效,同时处理和调试工具(moreheadawk)都能很好的适应行式存储的数据。
但当需要操作的表有成百上千个字段,而操作只有一小部分字段时,这往往会造成很大的浪费。
而此时若是采取列式存储只操作需要的列便可以大大提高性能。

rcfile 是一种行列存储相结合的存储方式,先将数据按行分块再按列式存储,保证同一条记录在一个块上,避免读取多个块,
有利于数据压缩和快速进行列存储。

对应hive API为org.apache.hadoop.hive.ql.io.RCFileInputFormatorg.apache.hadoop.hive.ql.io.RCFileOutputFormat

行存储

基于Hadoop系统行存储结构的优点在于快速数据加载和动态负载的高适应能力,这是因为行存储保证了相同记录的所有域

都在同一个集群节点,即同一个HDFS块。不过,行存储的缺点也是显而易见的,它不能支持快速查询处理,

因为当查询仅仅针对多列表中的少数几列时,它不能跳过不必要的列读取;此外由于混合着不同数据值的列,

行存储不易获得极高的压缩比,即空间利用率不易大幅提高。尽管通过熵编码和利用列相关性能够获得一个较好的压缩比,

但是复杂数据存储实现会导致解压开销增大。

下图显示了在HDFS上按照列组存储表格的例子。在图中,列A和列B存储在同一列组,而列C和列D分别存储在单独的列组。

查询时列存储能够避免读不 必要的列,并且压缩一个列中的相似数据能够达到较高的压缩比。然而由于元组重构的较高开销,

它并不能提供基于Hadoop系统的快速查询处理。列存储不 能保证同一记录的所有域都存储在同一集群节点,

记录的4个域存储在位于不同节点的3HDFS块中。因此,记录的重构将导致通过集群节 点网络的大量数据传输。

尽管预先分组后,多个列在一起能够减少开销,但是对于高度动态的负载模式,它并不具备很好的适应性。

除非所有列组根据可能的查询预 先创建,否则对于一个查询需要一个不可预知的列组合,一个记录的重构或许需要2个或

多个列组。再者由于多个组之间的列交叠,列组可能会创建多余的列数据存 储,这导致存储利用率的降低。


下图是一个 HDFS块内RCFile方式存储的例子。RCFileRecord Columnar File)存储结构遵循的是先水平划分,

再垂直划分的设计理念,它结合了行存储和列存储的优点:首先,RCFile保证同一行 的数据位于同一节点,

因此元组重构的开销很低;其次,像列存储一样,RCFile能够利用列维度的数据压缩,并且能跳过不必要的列读取。


四.ORCfile
orcfile是对rcfile的优化,可以提高hive的读、写、数据处理性能,提供更高的压缩效率。和RCFile格式相比,

ORC File格式有以下优点:
(1)、每个task只输出单个文件,这样可以减少NameNode的负载;
(2)、支持各种复杂的数据类型,比如: datetime, decimal, 以及一些复杂类型(struct, list, map, and union)
(3)、在文件中存储了一些轻量级的索引数据;
(4)、基于数据类型的块模式压缩:

1).integer类型的列用行程长度编码(run-length encoding);

2).String类型的列用字典编码(dictionaryencoding)
(5)、用多个互相独立的RecordReaders并行读相同的文件;
(6)、无需扫描markers就可以分割文件;
(7)、绑定读写所需要的内存;
(8)metadata的存储是用 Protocol Buffers的,所以它支持添加和删除一些列。
ORC
File
文件结构
ORC File
包含一组组的行数据,称为stripes,除此之外,ORCFilefile footer还包含一些额外的辅助信息。

ORC File文件的最后,
有一个被称为
postscript的区,它主要是用来存储压缩参数及压缩页脚的大小。
在默认情况下,一个stripe的大小为250MB。大尺寸的stripes使得从HDFS读数据更高效。
  在file footer里面包含了该ORC File文件中stripes的信息,每个stripe中有多少行,以及每列的数据类型。
当然,它里面还包含了列级别的一些聚合的结果,比
如:count, min, max, and sum。下图显示出可ORC File文件结构:

Stripe结构

  从上图我们可以看出,每个Stripe都包含index datarowdata以及stripe footerStripefooter包含流位置的目录;
Row data在表扫描的时候会用到。Index data包含每列的最大和最小值以及每列所在的行。行索引里面提供了偏移量,
它可以跳到正确的压缩块位置。具有相对频繁的行索引,使得在
stripe中快 速读取的过程中可以跳过很多行,

尽管这个stripe的大小很大。
在默认情况下,最大可以跳过
10000行。拥有通过过滤谓词而跳过大量的行的能力,你可 以在表的 secondarykeys 进行排序,
从而可以大幅减少执行时间。比如你的表的主分区是交易日期,那么你可以对次分区(
statezip code以及last name

进行排序。

五.自定义格式

若当前数据文件格式不能被当前hive所识别时,可以自定义文件格式,

用户可通过实现InputFormatOutputFormat来自定义输入输出格式。

六.总结

textfile 存储空间消耗比较大,并且压缩的text 无法分割和合并 查询的效率最低,可以直接存储,加载数据的速度最高

sequencefile 存储空间消耗最大,压缩的文件可以分割和合并 查询效率高,需要通过text文件转化来加载

orcfile, rcfile存储空间最小,查询的效率最高 ,需要通过text文件转化来加载,加载的速度最低.

orcfile, rcfile较有优势,orcfile,rcfile具备相当于行存储的数据加载和负载适应能力,扫描表时避免不必要的列读取,
拥有比其他结构更好的性能,而使用列维度的压缩,能有效提升存储空间利用率。

orcfile, rcfile数据加载是性能损失较大,但由于hdfs一次写入多次读写,所以损失可以接受。

SequenceFile,ORCFile(ORC)rcfile格式的表不能直接从本地文件导入数据,数据要先导入到textfile格式的表中,
然后再从
textfile表中导入到SequenceFile,ORCFile(ORC)rcfile表中。

推荐阅读
  • 本文介绍了在解决Hive表中复杂数据结构平铺化问题后,如何通过创建视图来准确计算广告日志的曝光PV,特别是针对用户对应多个标签的情况。同时,详细探讨了UDF的使用方法及其在实际项目中的应用。 ... [详细]
  • 本文详细介绍了 Apache ZooKeeper 的 FileTxnLog 类中的 setPreallocSize 方法,并提供了多个实际应用中的代码示例。通过这些示例,读者可以更好地理解如何在不同场景下合理设置日志文件的预分配大小。 ... [详细]
  • 本文介绍了Hive作为基于Hadoop的数据仓库工具的核心概念,包括其基本功能、使用理由、特点以及与Hadoop的关系。同时,文章还探讨了Hive相较于传统关系型数据库的不同之处,并展望了Hive的发展前景。 ... [详细]
  • 本文详细记录了一次 HBase RegionServer 异常宕机的情况,包括具体的错误信息和可能的原因分析。通过此案例,探讨了如何有效诊断并解决 HBase 中常见的 RegionServer 挂起问题。 ... [详细]
  • 深入浅出:Hadoop架构详解
    Hadoop作为大数据处理的核心技术,包含了一系列组件如HDFS(分布式文件系统)、YARN(资源管理框架)和MapReduce(并行计算模型)。本文将通过实例解析Hadoop的工作原理及其优势。 ... [详细]
  • Hadoop MapReduce 实战案例:手机流量使用统计分析
    本文通过一个具体的Hadoop MapReduce案例,详细介绍了如何利用MapReduce框架来统计和分析手机用户的流量使用情况,包括上行和下行流量的计算以及总流量的汇总。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • 本文介绍如何通过整合SparkSQL与Hive来构建高效的用户画像环境,提高数据处理速度和查询效率。 ... [详细]
  • 本文详细介绍了 `org.apache.hadoop.hdfs.server.namenode.FSNamesystem.shouldUseDelegationTokens()` 方法的用途和实际应用场景,并提供了多个代码示例以帮助开发者更好地理解和使用该方法。 ... [详细]
  • Hadoop Datanode DataXceiver 错误处理问题
    Ambari 每分钟会向 Datanode 发送一次“ping”请求以确保其正常运行。然而,Datanode 在处理空内容时没有相应的逻辑,导致出现错误。 ... [详细]
  • 深入解析Spark核心架构与部署策略
    本文详细探讨了Spark的核心架构,包括其运行机制、任务调度和内存管理等方面,以及四种主要的部署模式:Standalone、Apache Mesos、Hadoop YARN和Kubernetes。通过本文,读者可以深入了解Spark的工作原理及其在不同环境下的部署方式。 ... [详细]
  • 优化使用Apache + Memcached-Session-Manager + Tomcat集群方案
    本文探讨了使用Apache、Memcached-Session-Manager和Tomcat集群构建高性能Web应用过程中遇到的问题及解决方案。通过重新设计物理架构,解决了单虚拟机环境无法真实模拟分布式环境的问题,并详细记录了性能测试结果。 ... [详细]
  • Hadoop集群搭建:实现SSH无密码登录
    本文介绍了如何在CentOS 7 64位操作系统环境下配置Hadoop集群中的SSH无密码登录,包括环境准备、用户创建、密钥生成及配置等步骤。 ... [详细]
  • 初探Hadoop:第一章概览
    本文深入探讨了《Hadoop》第一章的内容,重点介绍了Hadoop的基本概念及其如何解决大数据处理中的关键挑战。 ... [详细]
  • 龙蜥社区开发者访谈:技术生涯的三次蜕变 | 第3期
    龙蜥社区的开发者们通过自己的实践和经验,推动着开源技术的发展。本期「龙蜥开发者说」聚焦于一位资深开发者的三次技术转型,分享他在龙蜥社区的成长故事。 ... [详细]
author-avatar
mobiledu2502906891
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有