热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

重新认识Mesos的设计架构

作者:Dong|新浪微博:西成懂|可以转载,但必须以超链接形式标明文章原始出处和作者信息及版权声明网址:dongxicheng.orgapache-mesosstudy-mesos-architecture-in-deepMesos中包含四类主要的服务(实际上是一个socketserver),它们分别是

作者: Dong | 新浪微博: 西成懂 | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明 网址:http://dongxicheng.org/apache-mesos/study-mesos-architecture-in-deep/ Mesos中包含四类主要的服务(实际上是一个socket server),它们分别是

Mesos中包含四类主要的服务(实际上是一个socket server),它们分别是Mesos Master,Mesos Slave,SchedulerProcess和ExecutorProcess,它们之间通过Protocal Buffer消息进行通信,每种服务内部注册了若干种Protocal Buffer消息处理器,一旦收到某种消息,则会调用相应的消息处理器进行处理。除了以上四种服务之外,Mesos还对外提供了三种可编程组件,分别是Alloctor、Framework Scheduler和Framework Executor,编写这几个组件必须按照要求实现了几个接口,而这些接口将分别被下图中相邻的服务调用。

大部分人看到以上Mesos架构后,均会认为Framework必须是一个通用的框架,比如MapReduce、Storm、Spark等,而Mesos Master负责将资源分配给各个框架,而各个框架的Scheduler进一步将资源分配给其内部的各个应用程序。这种观念是错误的,是对Mesos架构的一种错误解读。

事实上,Framework不仅可以是通用的框架,也可以是像Hadoop的Job或者YARN的Application那样的简单计算任务,也就是说,Framework并需要一定是一个“Framework”,或者一个长时间运行的服务(比如JobTracker等),也可以是一个短生命周期的Job或者Application。如果让Framework对应一个Hadoop Job,则可以这样设计Framework Scheduler和Framework Executor:

(1)Framework Scheduler功能

Framework Scheduler负责按照作业的输入数据量,将之分解成若干任务,并为这些任务申请资源、监控这些任务的运行状态,一旦发现某个任务运行失败则重新为之申请资源。

(2)Framework Executor功能

为一个节点上的Map Task或者Reduce Task准备运行环境,包括准备各种jar包、二进制文件,设置必要的环境变量,进行必要的资源隔离,启动Jetty Shuffle以为Reduce Task提供远程数据拷贝服务等,接收来自Framework Scheduler的命令(启动任务、杀死任务等),并执行。

通过上面的介绍可以知道,Framework Scheduler只负责运行一个Hadoop Job,而如果你对YARN比较熟悉,便会发现者正是YARN中的MapReduce ApplicationMaster做的事情,没错,Mesos与YARN的设计架构如此的相近,以至于我们很容易通过修改YARN 的任何一个ApplicationMaster,让它作为一个Framework Scheduler运行在Mesos中。

最近Mesos提供了一个mesos-submit工具(https://github.com/apache/mesos/blob/trunk/docs/Using-the-mesos-submit-tool.md,注意,该工具尚不完善),该工具可以让用户的Framework Scheduler运行在任何一个Mesos Slave上,以防止客户端运行过多的Framework Scheduler,这样,Mesos的整个架构和工作流程已经变得与YARN相差无几了。

为了让大家更容易理解Mesos和YARN在架构上的相似性,下面给出了Mesos和YARN的组件对应表:

Mesos中的组件 YARN中的组件 功能
Mesos Master Resource Manager 整个集群的资源管理和调度
Mesos Slave Node Manager 单个节点的资源管理(资源隔离、汇报等)、任务启动等
Framework Executor
Framework Scheduler ApplicationMaster 单个应用程序的管理和资源二次调度,基本操作均包括注册、资源申请/获取、资源分配(给内部的任务)等。

既然Mesos和YARN如此的相近,那么我们到底应该使用哪一个呢?或者说,哪一个系统更有前景?

就目前看来,YARN在以下几个方面存在明显优势:(1)人力投入大。目前YARN有专门的公司(hortonwork)维护和开发 (2)知名度高。YARN之前从Hadoop 1.0中演化而来,继承了Hadoop的知名度,且有大量公司和开发人员共享patch。然而,Mesos最大优点的设计简单、容易上手使用,它不像YARN那样,一个资源的分配过程要涉及到若干个状态机,且每种状态机十几种状态,十几种事件。但稳定性看,两个系统都处于研发和测试阶段,离稳定可用还有一段距离。

原创文章,转载请注明: 转载自董的博客

本文链接地址: http://dongxicheng.org/apache-mesos/study-mesos-architecture-in-deep/

作者:Dong,作者介绍:http://dongxicheng.org/about/


Copyright © 2013
This feed is for personal, non-commercial use only.
The use of this feed on other websites breaches copyright. If this content is not in your news reader, it makes the page you are viewing an infringement of the copyright. (Digital Fingerprint:
)

推荐阅读
  • 深入解析Hadoop的核心组件与工作原理
    本文详细介绍了Hadoop的三大核心组件:分布式文件系统HDFS、资源管理器YARN和分布式计算框架MapReduce。通过分析这些组件的工作机制,帮助读者更好地理解Hadoop的架构及其在大数据处理中的应用。 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • 本文详细介绍了 Flink 和 YARN 的交互机制。YARN 是 Hadoop 生态系统中的资源管理组件,类似于 Spark on YARN 的配置方式。我们将基于官方文档,深入探讨如何在 YARN 上部署和运行 Flink 任务。 ... [详细]
  • 简化报表生成:EasyReport工具的全面解析
    本文详细介绍了EasyReport,一个易于使用的开源Web报表工具。该工具支持Hadoop、HBase及多种关系型数据库,能够将SQL查询结果转换为HTML表格,并提供Excel导出、图表显示和表头冻结等功能。 ... [详细]
  • 深入解析:OpenShift Origin环境下的Kubernetes Spark Operator
    本文探讨了如何在OpenShift Origin平台上利用Kubernetes Spark Operator来管理和部署Apache Spark集群与应用。作为Radanalytics.io项目的一部分,这一开源工具为大数据处理提供了强大的支持。 ... [详细]
  • 深入解析Spark核心架构与部署策略
    本文详细探讨了Spark的核心架构,包括其运行机制、任务调度和内存管理等方面,以及四种主要的部署模式:Standalone、Apache Mesos、Hadoop YARN和Kubernetes。通过本文,读者可以深入了解Spark的工作原理及其在不同环境下的部署方式。 ... [详细]
  • 本文详细介绍了如何配置Apache Flume与Spark Streaming,实现高效的数据传输。文中提供了两种集成方案,旨在帮助用户根据具体需求选择最合适的配置方法。 ... [详细]
  • 本文介绍了Elasticsearch (ES),这是一个基于Java开发的开源全文搜索引擎。ES通过JSON接口提供服务,支持分布式集群管理和索引功能,特别适合大规模数据的快速搜索与分析。 ... [详细]
  • 全面解读Apache Flink的核心架构与优势
    Apache Flink作为大数据处理领域的新兴力量,凭借其独特的流处理能力和高效的批处理性能,迅速获得了广泛的关注。本文旨在深入探讨Flink的关键技术特点及其应用场景,为大数据处理提供新的视角。 ... [详细]
  • 深入浅出:Hadoop架构详解
    Hadoop作为大数据处理的核心技术,包含了一系列组件如HDFS(分布式文件系统)、YARN(资源管理框架)和MapReduce(并行计算模型)。本文将通过实例解析Hadoop的工作原理及其优势。 ... [详细]
  • Hadoop MapReduce 实战案例:手机流量使用统计分析
    本文通过一个具体的Hadoop MapReduce案例,详细介绍了如何利用MapReduce框架来统计和分析手机用户的流量使用情况,包括上行和下行流量的计算以及总流量的汇总。 ... [详细]
  • HBase 数据复制与灾备同步策略
    本文探讨了HBase在企业级应用中的数据复制与灾备同步解决方案,包括存量数据迁移及增量数据实时同步的方法。 ... [详细]
  • 本文介绍如何通过整合SparkSQL与Hive来构建高效的用户画像环境,提高数据处理速度和查询效率。 ... [详细]
  • 本文详细记录了 MIT 6.824 课程中 MapReduce 实验的开发过程,包括环境搭建、实验步骤和具体实现方法。 ... [详细]
author-avatar
文民左
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有