热门标签 | HotTags
当前位置:  开发笔记 > 数据库 > 正文

MongoDB复制集(三)内部数据同步

一数据同步一个健康的secondary在运行时,会选择一个离自己最近的,数据比自己新的节点进行数据同步。选定节点后,它会从这个节点拉取oplog同步日志,具体流程是这样的:a.执行这个op日志b.将这个op日志写入到自己的oplog中(local.oplog.rs)c.再请求下

一 数据同步 一个健康的secondary在运行时,会选择一个离自己最近的,数据比自己新的节点进行数据同步。选定节点后,它会从这个节点拉取oplog同步日志,具体流程是这样的: a.执行这个op日志 b.将这个op日志写入到自己的oplog中(local.oplog.rs) c.再请求下

一 数据同步

一个健康的secondary在运行时,会选择一个离自己最近的,数据比自己新的节点进行数据同步。选定节点后,它会从这个节点拉取oplog同步日志,具体流程是这样的: a.执行这个op日志 b.将这个op日志写入到自己的oplog中(local.oplog.rs)
c.再请求下一个op日志
如果同步操作在第1步和第2步之间出现问题宕机,那么secondary再重新恢复后,会检查自己这边最新的oplog,由于第2步还没有执行,所以自己这边还没有这条写操作的日志。这时候他会再把刚才执行过的那个操作执行一次。那对同一个写操作执行两次会不会有问题呢?MongoDB在设计oplog时就考虑到了这一点,所以所有的oplog都是可以重复执行的,比如你执行 {$inc:{counter:1}} 对counter字段加1,counter字段在加1 后值为2,那么在oplog里并不会记录 {$inc:{counter:1}} 这个操作,而是记录 {$set:{counter:2}}这个操作。所以无论多少次执行同一个写操作,都不会出现问题。
注:从节点不一定要从主节点的操作日志来读取数据,它也可以选择距离自己最近的(根据ping的时间来计算)的且比自己操作日志记录更新的从节点获取操作日志。

二 同步过程

当我们在MongoDB时执行一个写操作时,默认会直接返回成功,同时也可以通过设置w参数,指定这个写操作同步到几个节点后才返回成功。如下:

db.foo.runCommand({getLastError:1, w:2})

上面例子就是执行getLastError命令,使其在上一个写操作同步到两个节点上后再返回。不同的客户端可能在写法上不太一样,不过这个功能应该都是有的。对于重要数据,可以考虑采用这样的方式,通过牺牲一部分写性能来提升数据的安全性。

这个功能是如何实现的呢,primary节点是如何知道数据同步了几份呢?在调用上面命令时,实际上MongoDB内部执行了如下的一些流程:
a.在primary上完成写操作
b.在primary上记录一条oplog日志,日志中包含一个ts字段,值为写操作执行的时间,比如本例中记为t
c.客户端调用{getLastError:1, w:2}命令等待primary返回结果
d.secondary从primary拉取oplog,获取到刚才那一次写操作的日志
e.secondary按获取到的日志执行相应的写操作
f.执行完成后,secondary再获取新的日志,其向primary上拉取oplog的条件为{ts:{$gt:t}}
g.primary此时收到secondary的请求,了解到secondary在请求时间大于t的写操作日志,所以他知道操作在t之前的 日志都已经成功执行了
h.这时候getLastError命令检测到primary与secondary都完成了这次写操作,于是 w:2 的条件满足了,返回给客户端成功

\

注意:1.如果设置的w参数大于当前复制集中的从节点数目的话,写入操作会被阻塞,一直到写入节点数达到w参数所设置的数据才会返回。

2.将W参数设置成当前负责集合中从节点的数目的话,这个复制集将会对外提供强一致性的服务,但是整个复制集的写性能也会下降。

启动初始化

当一个新节点启动并加入到现在的Replica Sets中时,这时候新启动的节点会查看自己的oplog,通过一个叫 lastOpTimeWritten 的命令查找到它最近的一条写操作。这个命令你也可以随便在命令行执行:

> rs.debug.getLastOpWritten()

这个命令会返回一条oplog记录,其中的ts字段就是最近一次写操作的时间了。

如果你这个节点是全新的,没有数据,那么oplog里也没有数据,这时候节点会选择执行一次全量的同步。本文暂时不对全量同步的方法进行描述。

选择同步源节点

Replica Sets中的节点之间总在同步数据,但是他们不是通过传统的一主多从的方式来同步的。MongoDB的策略是选择一个合适的节点作为数据源。

首先secondary节点会通过ping的时间来确定其它节点与它的距离。时间越长的识为距离越远。然后通过下面方法确定其源节点:

for each member that is healthy:
    if member[state] == PRIMARY
        add to set of possible sync targets

    if member[lastOpTimeWritten] > our[lastOpTimeWritten]
        add to set of possible sync targets

sync target = member with the min ping time from the possible sync targets

对于节点是否healthy的判断,各个版本不同,但是其目的都是找出正常运转的节点。在2.0版本中,它的判断还包括了salve delay这个因素。

你可以通过运行db.adminCommand({replSetGetStatus:1})命令来查看当前的节点状况,在secondary上运行这个命令,你能看到syncingTo这个字段,这个字段的值就是这个secondary的同步源。(其实名字应该是叫syncingFrom,但是由于版本兼容的原因,沿用了这个错误的名字)

链式同步结构

vcq9vfjQ0M2ssr2ho8v50tTH6b/2u+G4tNTT0rvQqaGjPC9wPgo8cD4KICAgICAgICAgscjI587Sw8fT0L3ateNBo6zOqnByaW1hcnm92rXjo6zIu7rzQr3atePOqnNlY29uZGFyeb3ateOjrMv8tNNBvdq1482ssr3K/b7do6zNrMqx09bT0HNlY29uZGFyeb3ateNDo6zL/LTTzazKx3NlY29uZGFyebXEQr3atePNrLK9yv2+3aGj1eLR+UEtJmd0O0ItJmd0O0PWrrzkvs3QzrPJwcvSu7j2wbTKvbXEzayyvb3hubmho8jnufvO0sPHyei2qHfOqjOjrMTHw7RBvdq148jnus7E3NaqtcBDvdq149LRvq2000K92rXjzayyvbPJuabBy8TYo788L3A+CgogICAgICAgINXiysfNqLn9b3Bsb2fNrLK90K3S6cC0yrXP1rXEo6zO0sPH08PNqMvXtcTT79HUwLS94srN0rvPwm9wbG9ntcTNrLK90K3S6aGjCgo8YnI+CgoKICAgYS61sUO000LNrLK9yv2+3cqxo6xDu+HU2tCt0unW0LbUQsu1o7rO0tKqtNPE49Xizayyvcr9vt3By6OsyOe5+9C0stnX99PQd7LOyv21xLuwo6zO0rXEzayyvdKyy+PJz7DJoaMKICAgYi7Iu7rzQrvhu9i08Mu1o7rO0rK7ysfSu7j2cHJpbWFyeb3ateOjrM7Su+Gw0cTjtcTV4rj2vMbK/deqtb3O0rXEzayyvdS0yc/IpTxicj4KICAgYy7Iu7rzQtTZttRBtPK/qtK7uPbQwrXEway906OssqLH0rbUQcu1o7rV4rj2way908Tjvs21sbPJysdDtcSwyaOs0rLL49K7uPa8xsr91Np3wO+hozxicj4KICAgZC7V4sqxuvLU2kG/tMC0o6y+zdPQwb249sGsvdPBrLW9y/vJz8Pmo6zSu7j2ysdCo6zSu7j2ysfQ6cTitcRDo6zV4sG9uPbBrL3TtrzE3LGouObL+8u1zeqzycHLzayyvbLZ1/ehozxicj4KPHA+CiAgICAgICAgtbHSu7j20LSy2df31NpByc/WtNDQuvOjrELK18/IzayyvbW91eK49rLZ1/e1xG9wbG9no6zWtNDQzeq687vhuObL30GjrM7S1rTQ0M3qwcuho8i7uvNDzazR+bTTQsnPu/HIobW9QrXEb3Bsb2ejrNKy1rTQ0MHL1eLSu8z10LSy2df3o6zIu7rzy/u45svfQqOsztLWtNDQzerBy6OsQtTaytW1vdXiuPbP7NOmuvOjrLvhzai5/bjVssW/qs2otcTQ6cTizai1wLj6Qcu1o6zO0srH0OnE4rXEQ73ateOjrM7S0rLN6rPJ0LSy2df3wcuho9XiyrG68kG+zdaqtcCjrEGhokKhokPI/bj2vdq147a8zeqzydC0stnX98HLoaN3o7oztcTM9bz+wvrX46OsyLu687e1u9i4+LX308NnZXRMYXN0RXJyb3K1xL/Nu6e2y6OszeqzydXitM6y2df3oaM8L3A+CjxwPgq+38zlyP249r3ateO85LXEway908jnz8LNvKO6PC9wPgo8cHJlIGNsYXNzPQ=="brush:java;">C B A <====> <====> <---->
B和A之间有两条通道,双线那条是真正的同步连接,单线那条是一个虚拟连接。
注意:MongoDB这种链式同步结构类&#20284;于Hadoop中HDFS中数据块的流式复制,这样的好处是可以大大减轻主节点的压力,提高数据同步的速度。

三 新功能展望

上面就是当前的Replica Sets同步的内部实现,在后续这一块MongoDB还会进行一些新特性的开发。在2.2版本中,会提供replSetSyncFrom命令,让用户可以手动设置一个secondary的同步源。使用方法大概是这样:

> db.adminCommand({replSetSyncFrom:"otherHost:27017"})


推荐阅读
  • 58同城的Elasticsearch应用与平台构建实践
    本文由58同城高级架构师于伯伟分享,由陈树昌编辑整理,内容源自DataFunTalk。文章探讨了Elasticsearch作为分布式搜索和分析引擎的应用,特别是在58同城的实施案例,包括集群优化、典型应用实例及自动化平台建设等方面。 ... [详细]
  • Java面向对象编程深入解析
    本文详细探讨了Java中的关键字static、单例模式、main()方法、代码块、final关键字、抽象类与方法、模板方法设计模式、接口、内部类等内容,旨在帮助读者深入理解和掌握Java面向对象编程的核心概念。 ... [详细]
  • 本文介绍了软件测试项目的实际操作过程,包括各角色的职责分配、项目启动、测试流程及测试人员的主要任务,旨在为从事软件测试工作的技术人员提供指导。 ... [详细]
  • Celery在使用前必须实例化,称为application或app。app是线程安全的,具有不同配置、组件、task的多个Celery应用可以在同一个进 ... [详细]
  • 本文介绍了当遇到Windows 10更新失败或需要撤回更新时的解决方法,包括通过命令行清除更新缓存和使用系统还原功能等步骤。 ... [详细]
  • 上海地铁297个地下站台全面实现5G网络覆盖
    截止至2021年10月初,上海地铁全线(除轨道区域外)已完成5G网络建设,成功实现了297个地下站台的5G网络全面覆盖。此举标志着上海地铁在智能化、信息化建设方面迈出了重要一步。 ... [详细]
  • 解锁加密ZIP文件的高级技巧
    在日常工作中,经常会遇到需要访问被加密的ZIP文件的情况。当你没有密码时,这可能会成为一个难题。本文将指导你如何安全有效地处理这类问题,包括使用特定工具和技术来尝试恢复或移除密码。 ... [详细]
  • 本文提供了针对Windows 7操作系统中,使用浏览器时出现电脑卡死问题的有效解决方案,包括检查硬件加速设置、安全模式下的故障排查以及利用崩溃日志进行深入分析的方法。 ... [详细]
  • 本文详细介绍了如何为笔记本电脑配置无线网络连接,确保其安全性和稳定性,适合初学者快速上手。 ... [详细]
  • 深入解析JVM:类加载子系统详解
    本文旨在深入探讨Java虚拟机(JVM)中的类加载子系统,包括其基本结构、类加载器的工作原理、类的加载过程以及双亲委派机制。通过对这些关键点的详细分析,帮助读者更好地理解和掌握JVM的核心机制。 ... [详细]
  • 介绍一个基于区块链技术的分布式存储项目,其提供的网盘服务速度远超传统网盘,如百度网盘,最高可达5倍之多。 ... [详细]
  • 解析EasyCVR平台国标GB28181协议下的TCP与UDP模式
    在使用EasyCVR视频融合平台过程中,用户常遇到关于端口设置的问题,尤其是TCP和UDP模式的区别。本文将详细介绍这两种模式在GB28181协议下的具体应用及差异。 ... [详细]
  • NFC OMA 接口访问优化
    本文探讨了NFC设备中OMA接口的访问方式,特别是针对IC制造商提供的NFC swp-sim访问与NFC服务提供商对eSe(嵌入式安全元件)访问的不同处理方法。文中提出了几种解决方案以解决由此产生的双SmartcardService运行问题。 ... [详细]
  • NIO 通道接口详解
    本文介绍了NIO(New Input/Output)中的通道接口及其相关概念,包括通道的基本功能、接口设计以及各类通道接口的具体用途。通过本文,读者可以深入了解NIO通道的设计原理及其在实际项目中的应用。 ... [详细]
  • 多键索引(MultiKey Indexes)是在包含数组类型字段上创建的特殊索引,旨在优化对数组元素的查询性能。本文将通过实例介绍如何在MongoDB中创建和使用多键索引。 ... [详细]
author-avatar
手机用户2402851155
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有