热门标签 | HotTags
当前位置:  开发笔记 > 数据库 > 正文

关于Hibernate缓存机制

缓存是介于应用程序和物理数据源之间,其作用是为了降低应用程序对物理数据源访问的频次,从而提高了应用的运行性能。缓存内的数

缓存是介于应用程序和物理数据源之间,其作用是为了降低应用程序对物理数据源访问的频次,从而提高了应用的运行性能。缓存内的数

缓存是介于应用程序和物理数据源之间,其作用是为了降低应用程序对物理数据源访问的频次,从而提高了应用的运行性能。缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。

缓存的介质一般是内存,所以读写速度很快。但如果缓存中存放的数据量非常大时,也会用硬盘作为缓存介质。缓存的实现不仅仅要考虑存储的介质,还要考虑到管理缓存的并发访问和缓存数据的生命周期。

Hibernate的缓存包括Session的缓存和SessionFactory的缓存,其中SessionFactory的缓存又可以分为两类:内置缓存和外置缓存。Session的缓存是内置的,不能被卸载,也被称为Hibernate的第一级缓存。SessionFactory的内置缓存和Session的缓存在实现方式上比较相似,前者是SessionFactory对象的一些集合属性包含的数据,后者是指Session的一些集合属性包含的数据。SessionFactory的内置缓存中存放了映射元数据和预定义SQL语句,映射元数据是映射文件中数据的拷贝,而预定义SQL语句是在Hibernate初始化阶段根据映射元数据推导出来,SessionFactory的内置缓存是只读的,应用程序不能修改缓存中的映射元数据和预定义SQL语句,因此SessionFactory不需要进行内置缓存与映射文件的同步。SessionFactory的外置缓存是一个可配置的插件。在默认情况下,SessionFactory不会启用这个插件。外置缓存的数据是数据库数据的拷贝,外置缓存的介质可以是内存或者硬盘。SessionFactory的外置缓存也被称为Hibernate的第二级缓存。

Hibernate的这两级缓存都位于持久化层,存放的都是数据库数据的拷贝,那么它们之间的区别是什么呢?为了理解二者的区别,需要深入理解持久化层的缓存的两个特性:缓存的范围和缓存的并发访问策略。

持久化层的缓存的范围

缓存的范围决定了缓存的生命周期以及可以被谁访问。缓存的范围分为三类。

1 事务范围:缓存只能被当前事务访问。缓存的生命周期依赖于事务的生命周期,当事务结束时,缓存也就结束生命周期。在此范围下,缓存的介质是内存。事务可以是数据库事务或者应用事务,每个事务都有独自的缓存,缓存内的数据通常采用相互关联的的对象形式。

2 进程范围:缓存被进程内的所有事务共享。这些事务有可能是并发访问缓存,因此必须对缓存采取必要的事务隔离机制。缓存的生命周期依赖于进程的生命周期,进程结束时,缓存也就结束了生命周期。进程范围的缓存可能会存放大量的数据,所以存放的介质可以是内存或硬盘。缓存内的数据既可以是相互关联的对象形式也可以是对象的松散数据形式。松散的对象数据形式有点类似于对象的序列化数据,但是对象分解为松散的算法比对象序列化的算法要求更快。

3 集群范围:在集群环境中,缓存被一个机器或者多个机器的进程共享。缓存中的数据被复制到集群环境中的每个进程节点,进程间通过远程通信来保证缓存中的数据的一致性,缓存中的数据通常采用对象的松散数据形式。

对大多数应用来说,应该慎重地考虑是否需要使用集群范围的缓存,因为访问的速度不一定会比直接访问数据库数据的速度快多少。

持久化层可以提供多种范围的缓存。如果在事务范围的缓存中没有查到相应的数据,还可以到进程范围或集群范围的缓存内查询,如果还是没有查到,那么只有到数据库中查询。事务范围的缓存是持久化层的第一级缓存,通常它是必需的;进程范围或集群范围的缓存是持久化层的第二级缓存,通常是可选的。

持久化层的缓存的并发访问策略

当多个并发的事务同时访问持久化层的缓存的相同数据时,会引起并发问题,必须采用必要的事务隔离措施。

在进程范围或集群范围的缓存,即第二级缓存,会出现并发问题。因此可以设定以下四种类型的并发访问策略,每一种策略对应一种事务隔离级别。

事务型:仅仅在受管理环境中适用。它提供了Repeatable Read事务隔离级别。对于经常被读但很少修改的数据,可以采用这种隔离类型,因为它可以防止脏读和不可重复读这类的并发问题。

读写型:提供了Read Committed事务隔离级别。仅仅在非集群的环境中适用。对于经常被读但很少修改的数据,可以采用这种隔离类型,因为它可以防止脏读这类的并发问题。

非严格读写型:不保证缓存与数据库中数据的一致性。如果存在两个事务同时访问缓存中相同数据的可能,必须为该数据配置一个很短的数据过期时间,从而尽量避免脏读。对于极少被修改,并且允许偶尔脏读的数据,可以采用这种并发访问策略。

只读型:对于从来不会修改的数据,如参考数据,可以使用这种并发访问策略。

事务型并发访问策略是事务隔离级别最高,只读型的隔离级别最低。事务隔离级别越高,并发性能就越低。

什么样的数据适合存放到第二级缓存中?

1 很少被修改的数据

2 不是很重要的数据,允许出现偶尔并发的数据

3 不会被并发访问的数据

4 参考数据

不适合存放到第二级缓存的数据?

1 经常被修改的数据

2 财务数据,绝对不允许出现并发

3 与其他应用共享的数据。

Hibernate的二级缓存

如前所述,Hibernate提供了两级缓存,第一级是Session的缓存。由于Session对象的生命周期通常对应一个数据库事务或者一个应用事务,因此它的缓存是事务范围的缓存。第一级缓存是必需的,不允许而且事实上也无法比卸除。在第一级缓存中,持久化类的每个实例都具有唯一的OID。

第二级缓存是一个可插拔的的缓存插件,它是由SessionFactory负责管理。由于SessionFactory对象的生命周期和应用程序的整个过程对应,因此第二级缓存是进程范围或者集群范围的缓存。这个缓存中存放的对象的松散数据。第二级对象有可能出现并发问题,因此需要采用适当的并发访问策略,,该策略为被缓存的数据提供了事务隔离级别。缓存适配器用于把具体的缓存实现软件与Hibernate集成。第二级缓存是可选的,可以在每个类或每个集合的粒度上配置第二级缓存。

Hibernate的二级缓存策略的一般过程如下:

1) 条件查询的时候,总是发出一条select * from table_name where …. (选择所有字段)这样的SQL语句查询数据库,一次获得所有的数据对象。

2) 把获得的所有数据对象根据ID放入到第二级缓存中。

3) 当Hibernate根据ID访问数据对象的时候,首先从Session一级缓存中查;查不到,如果配置了二级缓存,那么从二级缓存中查;查不到,再查询数据库,把结果按照ID放入到缓存。

4) 删除、更新、增加数据的时候,同时更新缓存。

Hibernate的二级缓存策略,是针对于ID查询的缓存策略,对于条件查询则毫无作用。为此,Hibernate提供了针对条件查询的Query缓存。

Hibernate的Query缓存策略的过程如下:

1) Hibernate首先根据这些信息组成一个Query Key,Query Key包括条件查询的请求一般信息:SQL, SQL需要的参数,记录范围(起始位置rowStart,最大记录个数maxRows),等。

2) Hibernate根据这个Query Key到Query缓存中查找对应的结果列表。如果存在,那么返回这个结果列表;如果不存在,查询数据库,获取结果列表,把整个结果列表根据Query Key放入到Query缓存中。

3) Query Key中的SQL涉及到一些表名,如果这些表的任何数据发生修改、删除、增加等操作,这些相关的Query Key都要从缓存中清空。


推荐阅读
  • 编译过程涉及多个阶段,每个阶段都有其特定的任务和方法。本文详细介绍了编译过程的五个阶段:词法分析、语法分析、语义分析与中间代码生成、优化和目标代码生成。通过这些阶段,编译器将源代码转换为目标代码。 ... [详细]
  • 本文探讨了SSD购买后是否需要进行4K对齐的问题,并详细解释了4K对齐的原理及其重要性。通过对比机械硬盘与固态硬盘的结构,文章深入分析了4K对齐对SSD性能的影响,并提供了具体的对齐方法。 ... [详细]
  • Python环境中字体放大的解决方法
    在使用Python开发环境时,有时会遇到无法通过Ctrl+鼠标滚轮放大字体的问题。本文将介绍如何在不同环境下解决这一问题,包括在没有Settings选项的情况下的替代方案。 ... [详细]
  • 优先队列是一种特殊的队列,不遵循先进先出原则。它分为最大优先队列和最小优先队列。最大优先队列总是将当前最大的元素优先出队,而最小优先队列则总是将当前最小的元素优先出队。本文将详细介绍如何使用二叉堆在C#中实现这两种优先队列。 ... [详细]
  • 近年来,区块链技术备受关注,其中比特币(Bitcoin)功不可没。尽管数字货币的概念早在上个世纪就被提出,但直到比特币的诞生,这一概念才真正落地生根。本文将详细探讨比特币、以太坊和超级账本(Hyperledger)的核心技术和应用场景。 ... [详细]
  • 【转】强大的矩阵奇异值分解(SVD)及其应用
    在工程实践中,经常要对大矩阵进行计算,除了使用分布式处理方法以外,就是通过理论方法,对矩阵降维。一下文章,我在 ... [详细]
  • 今日深入研究了树状数组,感觉难度较大,通过课件和博客辅助学习,仍有许多疑惑。主要探讨了老师推荐的三道题目,初步掌握了树状数组的基本用法。同时,还学习了逆序数和离散化的概念及其应用。 ... [详细]
  • 自动驾驶中的9种传感器融合算法
    来源丨AI修炼之路在自动驾驶汽车中,传感器融合是融合来自多个传感器数据的过程。该步骤在机器人技术中是强制性的,因为它提供了更高的可靠性、冗余性以及最终的 ... [详细]
  • 欧拉法与龙格-库塔法在微分方程求解中的对比分析
    本文探讨了计算机如何理解和模拟连续系统的动态特性,重点介绍了欧拉法和龙格-库塔法这两种常用的数值积分方法。通过详细的理论分析和MATLAB代码实现,对比了两种方法在求解微分方程时的性能和适用性。 ... [详细]
  • 本文详细介绍了Dijkstra算法,该算法用于解决图中从单个源点到其他所有顶点的最短路径问题。 ... [详细]
  • YOLO由24层ConvNet和2层FCs组成。其核心思想是将图片均匀划分为多个gridcell,每个gridcell产生两个bbox和gridcell中如果存在对象,对象是各类的 ... [详细]
  • Java作为全球最流行的编程语言之一,应用广泛。本文将详细介绍Java开发的相关岗位及其具体职责,帮助读者更好地了解这一领域的职业发展路径。 ... [详细]
  • 岭回归及其应用
    本文介绍了岭回归的基本原理,并通过Python中的sklearn库实现了岭回归模型。岭回归通过在代价函数中加入L2正则项,有效解决了多重共线性问题。 ... [详细]
  • 2023年最新指南:如何在PHP中屏蔽警告和错误
    本文详细介绍了如何在PHP中屏蔽警告和错误,包括多种方法和最佳实践,帮助开发者提升代码质量和安全性。 ... [详细]
  • ipsec 加密流程(二):ipsec初始化操作
    《openswan》专栏系列文章主要是记录openswan源码学习过程中的笔记。Author:叨陪鲤Email:vip_13031075266163.comDate:2020.1 ... [详细]
author-avatar
怪兽锅锅PENGL
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有