热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

Hadoop新特性、改进、优化和Bug分析系列1:YARN-378

作者:Dong|新浪微博:西成懂|可以转载,但必须以超链接形式标明文章原始出处和作者信息及版权声明网址:dongxicheng.orgmapreduce-nextgenhadoop-jira-yarn-378本博客的文章集合:dongxicheng.orgrecommend重大消息:我的Hadoop新

作者: Dong | 新浪微博: 西成懂 | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明 网址:http://dongxicheng.org/mapreduce-nextgen/hadoop-jira-yarn-378/ 本博客的文章集合:http://dongxicheng.org/recommend/ 重大消息:我的Hadoop新


重大消息:我的Hadoop新书《Hadoop技术内幕:深入解析MapReduce架构设计与实现原理》已经开始在各大网站销售了,购书链接地址: 当当购书网址,京东购书网址,卓越购书网址。新书官方宣传主页: http://hadoop123.com/。


Hadoop jira链接:https://issues.apache.org/jira/browse/YARN-378
所属范围(新特性、改进、优化或Bug):改进
修复版本:2.1.0-beta及以上版本
所属分支(Common、HDFS、YARN或MapReduce):YARN
涉及模块:client, resourcemanager
英文标题:“ApplicationMaster retry times should be set by Client”

1. ?背景介绍

在Hadoop分支YARN中,当用户提交应用程序后(提交到ResourceManager上),ResourceManager首先要做的是为该应用程序申请资源以启动它的ApplicationMaster,而ApplicationMaster启动后,它(ApplicationMaster)负责应用程序内部任务的分解,监控、容错等。对于每个应用程序,由于只有一个ApplicationMaster,因此ApplicationMaster存在单点故障问题,一旦ApplicationMaster死掉,则整个应用程序可能会运行失败。当ResourceManager探测到ApplicationMaster运行失败(通过心跳超时机制)后,它会尝试在另外一个节点上重新启动该ApplicationMaster,通常而言,ApplicationMaster重启后,会恢复之前的运行状态(前提是ApplicationMaster上次死掉之前会记录一些日志在HDFS上),当然,这是ApplicationMaster自己的事情,ResourceManager无权干涉,ResourceManager要做的只是发现ApplicationMaster死亡后,重新为它申请资源在另外一个节点上启动。而本文介绍的这个特性则是如何指定每个应用程序ApplicationMaster的重试次数。

在2.1.0-beta版本之前,所有应用程序的ApplicationMaster重试次数是均是由ResourceManager决定的,管理员可通过配置参数yarn.resourcemanager.am.max-retries配置每个ApplicationMaster的重试次数,这个配置参数值适用于所有的应用程序,不可单独对单个应用程序定制化,而这个改进正是为了解决这个问题。

2. 解决思路

首先需要明确的是,这个改进的目的是,让用户可以为自己的应用程序定制ApplicationMaster的重试次数。

其次,这个重试次数将被两个组件用到,分别是ResourceManager和ApplicationMaster,其中ResourceManager用于决定,是否对失败的ApplicationMaster进行重试;ApplicationMaster用于决定,是否需要恢复上次运行时的状态(从第二次开始恢复),以从断点开始计算。

通常而言,有点经验的人,可能认为可以这样解决问题:将用户设置的值放到Configuration中,通过job.xml传递到ResourceManager和ApplicationMaster上,这样改动是最小的。但是很遗憾,客户端传递的job.xml只有ApplicationMaster会读取,而ResourceManager不会。

YARN 2.1.0-beta版本的解决方案如下:

(1) 客户端设置重试次数后,该值将被写入ProtocolBuffer对象ApplicationSubmissionContextProto中的新增字段maxAppAttempts中(在hadoop-yarn-project/hadoop-yarn/hadoop-yarn-api/src/main/proto/yarn_protos.proto中定义);

(2) 客户端提交应用程序后,maxAppAttempts值会通过RPC函数传递给ResourceManager;

(3)ResourceManager判断maxAppAttempts是否为0,如果为0,则改为ResourceManager内部已经设置好全局值,由属性arn.resourcemanager.am.max-attempts指定,默认为1;

(4)ResourceManager为ApplicationMaster申请资源后,与对应的节点通信启动ApplicationMaster,启动之前,会将maxAppAttempts值通过环境变量“MAX_APP_ATTEMPTS”传递给它

(5) ApplicationMaster在main函数中读取环境变量MAX_APP_ATTEMPTS,然后开始执行。

这样,各个应用程序可根据实际需要单独向用户提供可配置AM尝试次数的参数,比如MapReduce的参数是mapreduce.am.max-attempts,用户设置了该参数后,参数值会经过以上5个步骤进行传递。

3. ?我们学到了什么

(1)善用环境变量传递信息,环境变量可由父进程传递给子进程;

(2)在YARN中,代码改动通常是链式的,也就是说,需要依次改动几个组件,比如该例子中,需要一次改动client、ResourceManager和ApplicationMaster的代码,改动代码之前,要规划好修改方案和估算好代码的改动幅度;

(3)当需要添加一种新的ApplicationMaster相关的可配置参数时,可仿照这个jira实现完成,比如,假设让ApplicationMaster支持多种容错机制(现在不支持),其中一种是ApplicationMaster死掉后,尽量尝试在原节点重启(通常,ApplicationMaster中运行的是服务时,需要这么做),而这样改动之后,需要用户指定应用程序采用的容错机制类别。

原创文章,转载请注明: 转载自董的博客

本文链接地址: http://dongxicheng.org/mapreduce-nextgen/hadoop-jira-yarn-378/

作者:Dong,作者介绍:http://dongxicheng.org/about/

本博客的文章集合:http://dongxicheng.org/recommend/


Copyright © 2013
This feed is for personal, non-commercial use only.
The use of this feed on other websites breaches copyright. If this content is not in your news reader, it makes the page you are viewing an infringement of the copyright. (Digital Fingerprint:
)

推荐阅读
  • 深入解析Hadoop的核心组件与工作原理
    本文详细介绍了Hadoop的三大核心组件:分布式文件系统HDFS、资源管理器YARN和分布式计算框架MapReduce。通过分析这些组件的工作机制,帮助读者更好地理解Hadoop的架构及其在大数据处理中的应用。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • HBase运维工具全解析
    本文深入探讨了HBase常用的运维工具,详细介绍了每种工具的功能、使用场景及操作示例。对于HBase的开发人员和运维工程师来说,这些工具是日常管理和故障排查的重要手段。 ... [详细]
  • 本文详细介绍了 Flink 和 YARN 的交互机制。YARN 是 Hadoop 生态系统中的资源管理组件,类似于 Spark on YARN 的配置方式。我们将基于官方文档,深入探讨如何在 YARN 上部署和运行 Flink 任务。 ... [详细]
  • 本文详细介绍了 Java 中的 org.apache.hadoop.registry.client.impl.zk.ZKPathDumper 类,提供了丰富的代码示例和使用指南。通过这些示例,读者可以更好地理解如何在实际项目中利用 ZKPathDumper 类进行注册表树的转储操作。 ... [详细]
  • Hadoop发行版本选择指南:技术解析与应用实践
    本文详细介绍了Hadoop的不同发行版本及其特点,帮助读者根据实际需求选择最合适的Hadoop版本。内容涵盖Apache Hadoop、Cloudera CDH等主流版本的特性及应用场景。 ... [详细]
  • 简化报表生成:EasyReport工具的全面解析
    本文详细介绍了EasyReport,一个易于使用的开源Web报表工具。该工具支持Hadoop、HBase及多种关系型数据库,能够将SQL查询结果转换为HTML表格,并提供Excel导出、图表显示和表头冻结等功能。 ... [详细]
  • 深入解析BookKeeper的设计与应用场景
    本文介绍了由Yahoo在2009年开发并于2011年开源的BookKeeper技术。BookKeeper是一种高效且可靠的日志流存储解决方案,广泛应用于需要高性能和强数据持久性的场景。 ... [详细]
  • Hadoop MapReduce 实战案例:手机流量使用统计分析
    本文通过一个具体的Hadoop MapReduce案例,详细介绍了如何利用MapReduce框架来统计和分析手机用户的流量使用情况,包括上行和下行流量的计算以及总流量的汇总。 ... [详细]
  • 本文详细记录了 MIT 6.824 课程中 MapReduce 实验的开发过程,包括环境搭建、实验步骤和具体实现方法。 ... [详细]
  • 本文介绍了如何使用Flume从Linux文件系统收集日志并存储到HDFS,然后通过MapReduce清洗数据,使用Hive进行数据分析,并最终通过Sqoop将结果导出到MySQL数据库。 ... [详细]
  • 本文详细探讨了 org.apache.hadoop.ha.HAServiceTarget 类中的 checkFencingConfigured 方法,包括其功能、应用场景及代码示例。通过实际代码片段,帮助开发者更好地理解和使用该方法。 ... [详细]
  • 本文介绍了Hive作为基于Hadoop的数据仓库工具的核心概念,包括其基本功能、使用理由、特点以及与Hadoop的关系。同时,文章还探讨了Hive相较于传统关系型数据库的不同之处,并展望了Hive的发展前景。 ... [详细]
  • 构建高性能Feed流系统的设计指南
    随着移动互联网的发展,Feed流系统成为了众多社交应用的核心组成部分。本文将深入探讨如何设计一个高效、稳定的Feed流系统,涵盖从基础架构到高级特性的各个方面。 ... [详细]
  • ABP框架是ASP.NET Boilerplate的简称,它不仅是一个开源且文档丰富的应用程序框架,还提供了一套基于领域驱动设计(DDD)的最佳实践架构模型。本文将详细介绍ABP框架的特点、项目结构及其在Web API优先架构中的应用。 ... [详细]
author-avatar
mobiledu2502895693
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有