热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

NikitaIvanov谈GridGain的Hadoop内存片内加速技术

GridGain最近在2014年的Spark峰会上发布了Hadoop内存片内加速技术,可以为Hadoop应用带来内存片内计算的相关收益。该技术包括两个单元:和HadoopHDFS兼容的内存片内文件系统,以及为内存片内处理而优化的MapReduce实现。这两个单元对基于磁盘的HDFS和传统

GridGain最近在2014年的Spark峰会上发布了Hadoop内存片内加速技术,可以为Hadoop应用带来内存片内计算的相关收益。 该技术包括两个单元:和Hadoop HDFS兼容的内存片内文件系统,以及为内存片内处理而优化的MapReduce实现。这两个单元对基于磁盘的HDFS和传统

GridGain最近在2014年的Spark峰会上发布了Hadoop内存片内加速技术,可以为Hadoop应用带来内存片内计算的相关收益。

该技术包括两个单元:和Hadoop HDFS兼容的内存片内文件系统,以及为内存片内处理而优化的MapReduce实现。这两个单元对基于磁盘的HDFS和传统的MapReduce进行了扩展,为大数据处理情况提供了更好的性能。

内存片内加速技术消除了在传统Hadoop架构模型中与作业追踪者(job tracker)、任务追踪者(task tracker)相关的系统开销,它可以和现有的MapReduce应用一起工作而无需改动任何原有的MapReduce、HDFS和YARN环境的代码。

下面是InfoQ对GridGain的CTO Nikita Ivanov关于Hadoop内存片内加速技术和架构细节的访谈。

InfoQ: Hadoop内存片内加速技术的关键特性在于GridGain的内存片内文件系统和内存片内MapReduce,你能描述一下这两个组件是如何协同工作的吗?

Nikita:GridGain的Hadoop内存片内加速技术是一种免费、开源和即插即用的解决方案,它提升了传统MapReduce工作(MapReduce jobs)的速度,你只需用10分钟进行下载和安装,就可以得到十几倍的性能提升,并且不需要对代码做任何改动。该产品是业界第一个基于双模、高性能内存片内文件系统,以及为内存片内处理而优化的MapReduce实现方案,这个文件系统和Hadoop的HDFS百分百的兼容。内存片内HDFS和内存片内MapReduce以易用的方式对基于磁盘的HDFS和传统的MapReduce进行了扩展,以带来显著的性能提升。

简要地说,GridGain的内存片内文件系统GGFS提供了一个高性能、分布式并与HDFS兼容的内存片内计算平台,并在此进行数据的存储,这样我们基于YARN的MapReduce实现就可以在数据存储这块利用GGFS做针对性的优化。这两个组件都是必需的,这样才能达到十几倍的性能提升(在一些边界情况下可以更高)。

InfoQ: 如何对这两种组合做一下比较,一种是内存片内HDFS和内存片内MapReduce的组合,另一种是基于磁盘的HDFS和传统的MapReduce的组合?

Nikita:GridGain的内存片内方案和传统的HDFS/MapReduce方案最大的不同在于:

在GridGain的内存片内计算平台里,数据是以分布式的方式存储在内存中。
GridGain的MapReduce实现是从底层向上优化,以充分利用数据存储在内存中这一优势,同时改善了Hadoop之前架构中的一些缺陷。在GridGain的MapReduce实现中,执行路径是从客户端应用的工作提交者(job submitter)直接到数据节点,然后完成进程内(in-process)的数据处理,数据处理是基于数据节点中的内存片内数据分区,这样就绕过了传统实现中的作业跟踪者(job tracker)、任务跟踪者(task tracker)和名字节点(name nodes)这些单元,也避免了相关的延迟。

相比而言,传统的MapReduce实现中,数据是存储在低速的磁盘上,而MapReduce实现也是基于此而做优化的。

InfoQ:你能描述一下这个在Hadoop内存片内加速技术背后的双模、高性能的内存片内文件系统是如何工作的?它与传统的文件系统又有何不同呢?

Nikita:GridGain的内存片内文件系统GGFS支持两种模式,一种模式是作为独立的Hadoop簇的主文件系统,另一种模式是和HDFS进行串联,此时GGFS作为主文件系统HDFS的智能缓存层。

作为缓存层,GGFS可以提供直接读和直接写的逻辑,这些逻辑是高度可调节的,并且用户也可以自由地选择哪些文件和目录要被缓存以及如何缓存。这两种情况下,GGFS可以作为对传统HDFS的嵌入式替代方案,或者是一种扩展,而这都会立刻带来性能的提升。

InfoQ:如何比较GridGain的内存片内MapReduce方案和其它的一些实时流解决方案,比如Storm或者Apache Spark?

Nikita:最本质的差别在于GridGain的内存片内加速技术支持即插即用这一特性。不同于Storm或者Spark(顺便说一下,两者都是伟大的项目),它们需要对你原有的Hadoop MapReduce代码进行完全的推倒重来,而GridGain不需要修改一行代码,就能得到相同甚至更高的性能优势。

InfoQ:什么情况下需要使用Hadoop内存片内加速技术呢?

Nikita:实际上当你听到“实时分析”这个词时,也就听到了Hadoop内存片内加速技术的新用例。如你所知,在传统的Hadoop中并没有实时的东西。我们在新兴的HTAP (hybrid transactional and analytical processing)中正看到一些这样的用例,比如欺诈保护,游戏中分析,算法交易,投资组合分析和优化等等。

InfoQ:你能谈谈GridGain的Visor和基于图形界面的文件系统分析工具吗,以及他们如何帮助监视和管理Hadoop工作(Hadoop jobs)的?

Nikita:GridGain的Hadoop内存片内加速是和GridGain的Visor合在一起的,Visor是一种对GridGain产品进行管理和监视的方案。Visor提供了对Hadoop内存片内加速技术的直接支持,它为HDFS兼容的文件系统提供了精细的文件管理器和HDFS分析工具,通过它你可以看到并分析和HDFS相关的各种实时性能信息。

InfoQ:后面的产品路标是怎么样的呢?

Nikita:我们会持续投资(同我们的开源社区一起)来为Hadoop相关产品技术,包括Hive、Pig和Hbase,提供性能提升方案。

Taneja Group也有相关报道(Memory is the Hidden Secret to Success with Big Data, 下载全部报告需要先注册),讨论了GridGain如何把Hadoop内存片内加速技术和已有的Hadoop簇、传统基于磁盘的有缺陷的数据库系统以及面向批处理的MapReduce技术进行集成。

关于被访问者

\Nikita Ivanov是GridGain系统公司的发起人和CTO,GridGain成立于2007年,投资者包括RTP Ventures和Almaz Capital。Nikita领导GridGain开发了领先的分布式内存片内数据处理技术-领先的Java内存片内计算平台,今天在全世界每10秒它就会启动运行一次。Nikita有超过20年的软件应用开发经验,创建了HPC和中间件平台,并在一些创业公司和知名企业都做出过贡献,包括Adaptec, Visa和BEA Systems。Nikita也是使用Java技术作为服务器端开发应用的先驱者,1996年他在为欧洲大型系统做集成工作时他就进行了相关实践。

查看参考原文:Nikita Ivanov on GridGain’s In-Memory Accelerator for Hadoop


推荐阅读
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 本文介绍如何通过整合SparkSQL与Hive来构建高效的用户画像环境,提高数据处理速度和查询效率。 ... [详细]
  • 2012年9月12日优酷土豆校园招聘笔试题目解析与备考指南
    2012年9月12日,优酷土豆校园招聘笔试题目解析与备考指南。在选择题部分,有一道题目涉及中国人的血型分布情况,具体为A型30%、B型20%、O型40%、AB型10%。若需确保在随机选取的样本中,至少有一人为B型血的概率不低于90%,则需要选取的最少人数是多少?该问题不仅考察了概率统计的基本知识,还要求考生具备一定的逻辑推理能力。 ... [详细]
  • 构建高可用性Spark分布式集群:大数据环境下的最佳实践
    在构建高可用性的Spark分布式集群过程中,确保所有节点之间的无密码登录是至关重要的一步。通过在每个节点上生成SSH密钥对(使用 `ssh-keygen -t rsa` 命令并保持默认设置),可以实现这一目标。此外,还需将生成的公钥分发到所有节点的 `~/.ssh/authorized_keys` 文件中,以确保节点间的无缝通信。为了进一步提升集群的稳定性和性能,建议采用负载均衡和故障恢复机制,并定期进行系统监控和维护。 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • 深入理解云计算与大数据技术
    本文详细探讨了云计算与大数据技术的关键知识点,包括大数据处理平台、社会网络大数据、城市大数据、工业大数据、教育大数据、数据开放与共享的应用,以及搜索引擎与Web挖掘、推荐技术的研究及应用。文章还涵盖了云计算的基础概念、特点和服务类型分类。 ... [详细]
  • 深入解析:存储技术的演变与发展
    本文探讨了从单机文件系统到分布式文件系统的存储技术发展过程,详细解释了各种存储模型及其特点。 ... [详细]
  • 本文介绍了Hadoop的核心组件,包括高可靠性和高吞吐量的分布式文件系统HDFS、分布式的离线并行计算框架MapReduce、作业调度与集群资源管理框架YARN以及支持其他模块的工具模块Common。 ... [详细]
  • 大数据领域的职业路径与角色解析
    本文将深入探讨大数据领域的各种职业和工作角色,帮助读者全面了解大数据行业的需求、市场趋势,以及从入门到高级专业人士的职业发展路径。文章还将详细介绍不同公司对大数据人才的需求,并解析各岗位的具体职责、所需技能和经验。 ... [详细]
  • 本文介绍了如何使用Flume从Linux文件系统收集日志并存储到HDFS,然后通过MapReduce清洗数据,使用Hive进行数据分析,并最终通过Sqoop将结果导出到MySQL数据库。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 美团优选推荐系统架构师 L7/L8:算法与工程深度融合 ... [详细]
  • 字节跳动深圳研发中心安全业务团队正在火热招募人才! ... [详细]
author-avatar
尹一2502904223
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有