热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

大数据图数据库之数据分片

节选自《大数据日知录:架构与算法》十四章,书籍目录在此对于海量待挖掘数据,在分布式计算环境下,首先面临的问题就是如何将数据比较均匀地分配到不同的服务器上。对于非图数据来说,这个问题解决起来往往比较直观,因为记录之间独立无关联,所以对数据切

节选自《大数据日知录:架构与算法》十四章,书籍目录在此 对于海量待挖掘数据,在分布式计算环境下,首先面临的问题就是如何将数据比较均匀地分配到不同的服务器上。对于非图数据来说,这个问题解决起来往往比较直观,因为记录之间独立无关联,所以对数据切

节选自《大数据日知录:架构与算法》十四章,书籍目录在此

对于海量待挖掘数据,在分布式计算环境下,首先面临的问题就是如何将数据比较均匀地分配到不同的服务器上。对于非图数据来说,这个问题解决起来往往比较直观,因为记录之间独立无关联,所以对数据切分算法没有特别约束,只要机器负载尽可能均衡即可。由于图数据记录之间的强耦合性,如果数据分片不合理,不仅会造成机器之间负载不均衡,还会大量增加机器之间的网络通信(见图14-5),再考虑到图挖掘算法往往具有多轮迭代运行的特性,这样会明显放大数据切片不合理的影响,严重拖慢系统整体的运行效率,所以合理切分图数据对于离线挖掘类型图应用的运行效率来说非常重要,但是这也是至今尚未得到很好解决的一个潜在问题。

对于图数据的切片来说,怎样才是一个合理或者是好的切片方式?其判断标准应该是什么?就像上面的例子所示,衡量图数据切片是否合理主要考虑两个因素:机器负载均衡以及网络通信总量。如果单独考虑机器负载均衡,那么最好是将图数据尽可能平均地分配到各个服务器上,但是这样不能保证网络通信总量是尽可能少的(参考图14-5右端切割方式,负载比较均衡,但是网络通信较多);如果单独考虑网络通信,那么可以将密集连通子图的所有节点尽可能放到同一台机器上,这样就有效地减少了网络通信量,但是这样很难做到机器之间的负载均衡,某个较大的密集连通子图会导致某台机器高负载。所以,合理的切片方式需要在这两个因素之间找到一个较稳妥的均衡点,以期系统整体性能最优。

\

下面介绍两类从不同出发点切割图数据的方法,并分别介绍典型的具体切分算法及其对应的数学分析,首先需要强调一点:在选择具体的切分算法时并非越复杂的算法越可能在实际系统中被采纳,读者可以思考其中的道理,在后面会给出解答。

14.3.1 切边法(Edge-Cut)

现在面临的问题是:给定一个巨大的图数据和p台机器,如何将其切割成p份子图?解决这个图切割问题有两种不同的思路。

切边法代表了最常见的一种思路,切割线只能穿过连接图节点的边,通过对边的切割将完整的图划分为p个子图。图14-6代表将7个节点的图分发到3台机器上,左端展示了切边法方式,图节点的编号代表节点被分发到的机器编号。

\

通过切边法切割后的图数据,任意一个图节点只会被分发到一台机器,但是被切割开的边数据会在两台机器中都保存,而且被切割开的边在图计算的时候意味着机器间的远程通信。很明显,系统付出的额外存储开销和通信开销取决于被切割开的边的数量,图切割时通过的边越多,则系统需额外承载的存储开销和通信开销越高。

前文有述,衡量图数据分片合理与否有两个考虑因素:负载均衡和机器通信量,所以对于切边法来说,所有具体的切割算法追求的目标不外是:如何在尽可能均衡地将图节点分配到集群中的不同机器上这一约束下,来获得最小化切割边数量。

\

即在每台机器被分发到的节点尽可能均匀的条件约束下,求切割边最少的方法。其中,|V|/p代表所有的节点被p台机器均分所得数值,l≥1代表不平衡调节因子,通过调节l的大小可以控制节点分配的均匀度,当其值为1时,要求完全均分,其值越大,允许的不均衡程度越高。

从上述形式化描述可以看出,lamda约等于1的时候,这个问题本质上是一个图切割中的均衡p路分区(Balanced p-way Partitioning)问题,解决这个问题有很多相关研究(有兴趣的读者可以阅读本章参考文献[4]),但是由于图切割算法的时间复杂度较高,基本不太适合处理大规模数据,所以在真实的大规模数据场景下很少被采用。

在实际的图计算系统中,经常使用的策略是节点随机均分法,即通过哈希函数将节点均分到集群的各个机器中,并不仔细考虑边切割情况。Pregel和GraphLab都采用了这种策略。这种方法的优点是快速、简单且易实现,但是从定理14.1可以证明这种方法会将图中绝大多数的边都切开。

由定理14.1可知,假设集群包含10台机器,则被切割的边比例大约为90%,即90%的边会被切开,而如果包含100台机器,则99%的边会被切开。可见,这种切分方式是效率很低的一种。

14.3.2 切点法(Vertex-Cut)

切点法代表另外一种切割图的不同思路。与切边法不同,切点法在切割图的时候,切割线只能通过图节点而非边,被切割线切割的图节点可能同时出现在多个被切割后的子图中。图14-6右侧是切点法示意图,从图中可看出,图中心的节点被切割成三份,也就是意味着这个节点会同时出现在被切割后的三个子图中。

与切边法正好相反,切点法切割后的图中,每条边只会被分发到一台机器上,不会重复存储,但是被切割的节点会被重复存储在多台机器中,因此,同样存在额外存储开销。另外,如此切割带来的问题是:图算法在迭代过程中往往会不断更新图节点的值,因为某个节点可能存储在多台机器中,也即存在数据多副本问题,所以必须解决图节点值数据的一致性问题。对这个问题,在后面讲解PowerGraph系统时,会给出一种典型的解决方案。

那么,既然切点法图中的边都没有被切割,机器之间是否就无须通信开销了呢?事实并非如此,在维护被切割的图节点值数据一致性时仍然会产生通信开销。所以,对于切点法来说,所有具体算法追求的合理切分目标是:如何在尽可能均匀地将边数据分发到集群的机器中这个约束条件下,最小化被切割开的图节点数目。

\即在每台机器被分发到的边尽可能均匀的条件约束下,求平均副本数最少的方法。其中,|E|/p代表所有边被p台机器均分所得数值,l≥1代表不平衡调节因子,通过调节l的大小可以控制边分配的均匀度,当其值为1时,要求完全均分,其值越大,允许的不均衡程度越高。

同样,由于采用复杂图切割算法的时间复杂度太高,所以实际系统中最常用的还是边随机均分
\
现实世界中的大多数图的边分布都遵循power law法则,理论和实践已经证明,对于遵循这一法则的图数据来说,属于切点法的边随机均分法要比切边法里的节点随机均分法强,其计算效率要高出至少一个数量级。所以总体而言,对于一般情形的图数据,采取切点法要明显优于切边法。

请思考:为何不是越复杂、有效的切分算法越受欢迎?

解答:一般来说,图挖掘算法分为两个阶段。

阶段一:集中式图数据切分与分发;阶段二:分布式图计算。

如果采用复杂的图切割算法,则系统负载均衡好,机器间通信量较少,所以第二阶段运行的效率高,但是采用复杂算法不仅开发成本高,在第一阶段付出的时间成本也很高,甚至因此付出的时间成本要高于在第二阶段产生的效率收益,所以选择何种切分算法也需要有全局的效率权衡。


推荐阅读
  • 深入解析Spring Cloud微服务架构与分布式系统实战
    本文详细介绍了Spring Cloud在微服务架构和分布式系统中的应用,结合实际案例和最新技术,帮助读者全面掌握微服务的实现与优化。 ... [详细]
  • 深入理解一致性哈希算法及其应用
    本文详细介绍了分布式系统中的一致性哈希算法,探讨其原理、优势及应用场景,帮助读者全面掌握这一关键技术。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 本文探讨了如何在日常工作中通过优化效率和深入研究核心技术,将技术和知识转化为实际收益。文章结合个人经验,分享了提高工作效率、掌握高价值技能以及选择合适工作环境的方法,帮助读者更好地实现技术变现。 ... [详细]
  • 本文介绍了数据库体系的基础知识,涵盖关系型数据库(如MySQL)和非关系型数据库(如MongoDB)的基本操作及高级功能。通过三个阶段的学习路径——基础、优化和部署,帮助读者全面掌握数据库的使用和管理。 ... [详细]
  • ZooKeeper集群脑裂问题及其解决方案
    本文深入探讨了ZooKeeper集群中可能出现的脑裂问题,分析其成因,并提供了多种有效的解决方案,确保集群在高可用性环境下的稳定运行。 ... [详细]
  • 在项目中使用 Redis 时,了解其不同架构模式(如单节点、主从复制、哨兵模式和集群)对于确保系统的高可用性和扩展性至关重要。本文将详细探讨这些模式的特点和应用场景。 ... [详细]
  • 本文作为SpringCloud Alibaba系列教程的第一部分,主要介绍如何搭建SpringCloud Alibaba的开发环境,帮助初学者快速入门。SpringCloud Alibaba是由阿里巴巴团队开源的一套微服务工具集,旨在简化分布式系统的构建过程。 ... [详细]
  • 本文将详细介绍如何在ThinkPHP6框架中实现多数据库的部署,包括读写分离的策略,以及如何通过负载均衡和MySQL同步技术优化数据库性能。 ... [详细]
  • 使用LVS与ldirectord实现高可用负载均衡
    本文介绍了如何通过LVS(Linux Virtual Server)结合ldirectord工具来实现服务器的健康检查及负载均衡功能。环境设置包括一个LVS节点和两个真实服务器节点,通过配置ldirectord进行健康状态监测,确保系统的高可用性。 ... [详细]
  • Spring Cloud因其强大的功能和灵活性,被誉为开发分布式系统的‘一站式’解决方案。它不仅简化了分布式系统中的常见模式实现,还被广泛应用于企业级生产环境中。本书内容详实,覆盖了从微服务基础到Spring Cloud的高级应用,适合各层次的开发者。 ... [详细]
  • 本文作者分享了在阿里巴巴获得实习offer的经历,包括五轮面试的详细内容和经验总结。其中四轮为技术面试,一轮为HR面试,涵盖了大量的Java技术和项目实践经验。 ... [详细]
  • Nginx 反向代理与负载均衡实验
    本实验旨在通过配置 Nginx 实现反向代理和负载均衡,确保从北京本地代理服务器访问上海的 Web 服务器时,能够依次显示红、黄、绿三种颜色页面以验证负载均衡效果。 ... [详细]
  • NTP服务器配置详解:原理与工作模式
    本文深入探讨了网络时间协议(NTP)的工作原理及其多种工作模式,旨在帮助读者全面理解NTP的配置参数和应用场景。NTP是基于RFC 1305的时间同步标准,广泛应用于分布式系统中,确保设备间时钟的一致性。 ... [详细]
  • 深入解析Serverless架构模式
    本文将详细介绍Serverless架构模式的核心概念、工作原理及其优势。通过对比传统架构,探讨Serverless如何简化应用开发与运维流程,并介绍当前主流的Serverless平台。 ... [详细]
author-avatar
米粒多可爱几_642
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有