热门标签 | HotTags
当前位置:  开发笔记 > 数据库 > 正文

Hive与Oracle表关联语句对比

在将ORACLE存储过程迁移到HIVE平台时,不可避免地会遇到表关联的相应语法问题。本文详细对比了ORALCE和HIVE的各种表关联语法,包

在将ORACLE存储过程迁移到HIVE平台时,不可避免地会遇到表关联的相应语法问题。本文详细对比了ORALCE和HIVE的各种表关联语法,包

在将Oracle存储过程迁移到HIVE平台时,不可避免地会遇到表关联的相应语法问题。

本文详细对比了ORALCE和HIVE的各种表关联语法,,包括内关联,左,右关联,全外关联和笛卡尔积。

一.创建表

ORACLE:

create table a
(
a1 number(10),
a2 varchar2(50)
);

create table b
(
b1 number(10),
b2 varchar2(50)
);

HIVE:

CREATE TABLE IF NOT EXISTS a (
a1 STRING,
a2 STRING)
COMMENT 'TABLE A'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
TBLPROPERTIES ( 'created_at'='2014-04-28','creator'='HENRY' );

二.插入数据

ORACLE:

insert into a(a1,a2) values(1,'X');
insert into a(a1,a2) values(2,'Y');
insert into a(a1,a2) values(3,'Z');

insert into b(b1,b2) values(1,'X');
insert into b(b1,b2) values(2,'Y');
insert into b(b1,b2) values(4,'Z');

HIVE:

hive (default)> load data local inpath './data1' into table a;
Copying data from file:/home/Hadoop/roger/sql/renguihe/data
Copying file: file:/home/hadoop/roger/sql/renguihe/data
Loading data to table default.a
Table default.a stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 12, raw_data_size: 0]
OK
Time taken: 1.961 seconds
hive (default)> load data local inpath './data1' into table b;
Copying data from file:/home/hadoop/roger/sql/renguihe/data
Copying file: file:/home/hadoop/roger/sql/renguihe/data
Loading data to table default.b
Table default.b stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 12, raw_data_size: 0]
OK
Time taken: 0.392 seconds

其中data1数据文件内容为:

1|X
2|Y
3|Z

data2数据文件内容为:

1|X
2|Y
4|Z

三.等值关联

ORACLE:

select * from a,b where a.a1 = b.b1;

或:

select * from a join b on a.a1 = b.b1;

结果如下图所示:

HIVE:

select * from a join b on a.a1 = b.b1;

注意HIVE中不能使用where来表示关联条件。

执行过程及结果如下图所示:

hive (default)> select * from a join b on a.a1 = b.b1;
Total MapReduce jobs = 1
setting HADOOP_USER_NAME hadoop
Execution log at: /tmp/hadoop/.log
2014-04-29 09:13:27 Starting to launch local task to process map join; maximum memory = 1908932608
2014-04-29 09:13:27 Processing rows: 3 Hashtable size: 3 Memory usage: 110981704 rate: 0.058
2014-04-29 09:13:27 Dump the hashtable into file: file:/tmp/hadoop/hive_2014-04-29_09-13-25_273_8486588204512196396/-local-10002/HashTable-Stage-3/MapJoin-mapfile00--.hashtable
2014-04-29 09:13:27 Upload 1 File to: file:/tmp/hadoop/hive_2014-04-29_09-13-25_273_8486588204512196396/-local-10002/HashTable-Stage-3/MapJoin-mapfile00--.hashtable File size: 438
2014-04-29 09:13:27 End of local task; Time Taken: 0.339 sec.
Execution completed successfully
Mapred Local Task Succeeded . Convert the Join into MapJoin
Mapred Local Task Succeeded . Convert the Join into MapJoin
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201404251509_0131, Tracking URL = IP:50030/jobdetails.jsp?jobid=job_201404251509_0131
Kill
Command = /home/hadoop/package/hadoop-1.0.4/libexec/../bin/hadoop job -kill job_201404251509_0131
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2014-04-29 09:13:39,979 Stage-3 map = 0%, reduce = 0%
2014-04-29 09:13:46,025 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:47,034 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:48,044 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:49,052 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:50,061 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:51,069 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:52,077 Stage-3 map = 100%, reduce = 100%, Cumulative CPU 1.59 sec
MapReduce Total cumulative CPU time: 1 seconds 590 msec
Ended Job = job_201404251509_0131
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 1.59 sec HDFS Read: 211 HDFS Write: 16 SUCCESS
Total MapReduce CPU Time Spent: 1 seconds 590 msec
OK
a1 a2 b1 b2
1 X 1 X
2 Y 2 Y

更多详情见请继续阅读下一页的精彩内容


推荐阅读
  • 本文介绍了Hive作为基于Hadoop的数据仓库工具的核心概念,包括其基本功能、使用理由、特点以及与Hadoop的关系。同时,文章还探讨了Hive相较于传统关系型数据库的不同之处,并展望了Hive的发展前景。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 深入浅出:Hadoop架构详解
    Hadoop作为大数据处理的核心技术,包含了一系列组件如HDFS(分布式文件系统)、YARN(资源管理框架)和MapReduce(并行计算模型)。本文将通过实例解析Hadoop的工作原理及其优势。 ... [详细]
  • Hadoop发行版本选择指南:技术解析与应用实践
    本文详细介绍了Hadoop的不同发行版本及其特点,帮助读者根据实际需求选择最合适的Hadoop版本。内容涵盖Apache Hadoop、Cloudera CDH等主流版本的特性及应用场景。 ... [详细]
  • 本文探讨了Hive作业中Map任务数量的确定方式,主要涉及HiveInputFormat和CombineHiveInputFormat两种InputFormat的分片计算逻辑。通过调整相关参数,可以有效控制Map任务的数量,进而优化Hive作业的性能。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • 本文详细分析了Hive在启动过程中遇到的权限拒绝错误,并提供了多种解决方案,包括调整文件权限、用户组设置以及环境变量配置等。 ... [详细]
  • HBase运维工具全解析
    本文深入探讨了HBase常用的运维工具,详细介绍了每种工具的功能、使用场景及操作示例。对于HBase的开发人员和运维工程师来说,这些工具是日常管理和故障排查的重要手段。 ... [详细]
  • 本文探讨了如何在Hive(基于Hadoop)环境中编写类似SQL的语句,以去除字段中的空格。特别是在处理邮政编码等数据时,去除特定位置的空格是常见的需求。 ... [详细]
  • 本文详细介绍如何使用 Apache Spark 执行基本任务,包括启动 Spark Shell、运行示例程序以及编写简单的 WordCount 程序。同时提供了参数配置的注意事项和优化建议。 ... [详细]
  • 深入解析Hadoop的核心组件与工作原理
    本文详细介绍了Hadoop的三大核心组件:分布式文件系统HDFS、资源管理器YARN和分布式计算框架MapReduce。通过分析这些组件的工作机制,帮助读者更好地理解Hadoop的架构及其在大数据处理中的应用。 ... [详细]
  • MapReduce原理是怎么剖析的
    这期内容当中小编将会给大家带来有关MapReduce原理是怎么剖析的,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。1 ... [详细]
  • 58同城的Elasticsearch应用与平台构建实践
    本文由58同城高级架构师于伯伟分享,由陈树昌编辑整理,内容源自DataFunTalk。文章探讨了Elasticsearch作为分布式搜索和分析引擎的应用,特别是在58同城的实施案例,包括集群优化、典型应用实例及自动化平台建设等方面。 ... [详细]
  • 初探Hadoop:第一章概览
    本文深入探讨了《Hadoop》第一章的内容,重点介绍了Hadoop的基本概念及其如何解决大数据处理中的关键挑战。 ... [详细]
  • Hadoop MapReduce 实战案例:手机流量使用统计分析
    本文通过一个具体的Hadoop MapReduce案例,详细介绍了如何利用MapReduce框架来统计和分析手机用户的流量使用情况,包括上行和下行流量的计算以及总流量的汇总。 ... [详细]
author-avatar
w3a00048_304
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有