热门标签 | HotTags
当前位置:  开发笔记 > 数据库 > 正文

关于Hadoop和Cassandra性能问题的讨论

本文由ImportNew

本文由 ImportNew - 唐尤华 翻译自 apmblog.compuware.com。如需转载本文,请先参见文章末尾处的转载要求。 最近几周里,我和同事参加了在旧金山港湾区的Hadoop和Cassandra高峰论坛。如此密集地与众多有经验的大数据专家进行探讨是一件非常享受的事情。感谢

本文由 ImportNew - 唐尤华 翻译自 apmblog.compuware.com。如需转载本文,请先参见文章末尾处的转载要求。

最近几周里,我和同事参加了在旧金山港湾区的Hadoop和Cassandra高峰论坛。如此密集地与众多有经验的大数据专家进行探讨是一件非常享受的事情。感谢我们的合作伙伴DataStax和Hortonworks主办了这场盛会!与此同时,我也看到性能问题已经成为了社区里讨论的主要内容。我们搜集了很多典型大数据性能问题的反馈,也惊讶于性能问题带来的挑战。因为与会者都是专家,因此通用性问题和基础的集群监控方法不在讨论之列。本文会介绍关于Hadoop和Cassandra的高级问题。

我整理了最有意思和最常见的Hadoop和Cassandra部署问题:

Hadoop焦点问题

Map Reduce数据本地性问题

数据本地性是Hadoop Map/Reduce的核心优势,map代码会在数据所处的节点上执行。然而有意思的是,很多人在实践中发现情况并非总是如此。他们发现了以下例外情况:

  • 预测执行
  • 异构的分布式集群
  • 数据分布和位置
  • 数据布局和输入分流

这些问题在大集群里出现更加频繁,也就是说数据节点越多本地化数据就越少。由于越大的集群完全相同的可能性就越小,一些节点的更新速度会比其他节点更快导致计算比例失衡。预测执行即使没有本地数据也会占用计算能力。问题数据节点可能会计算其他内容,这会导致另一个节点执行非本地处理。问题的根源可能在数据布局和输入分流上。无论如何,处理非本地数据会造成网络的扩展性问题,使得网络成为瓶颈。不仅如此,由于数据本地性不容易观察诊断这些问题非常困难。

为了提高数据本地性,你首先需要检测你的任务(job)中哪些有数据本地性问题或者会随着时间性能下降。通过APM(每分钟操作次数)方案,你可以知道哪些任务访问了什么数据节点。解决本地性问题更为复杂,包括更改数据位置和数据布局、使用不同的调度器或者简单改变任务的映射器(mapper)和减速器槽(reducer slot)。接下来,通过执行同样的工作你可以验证新方案是否能带来更好的本地数据比率。

低效任务代码和Hadoop工作量“分析”

接着我们又证实了一个有趣的观点:很多Hadoop工作量非常低效。请注意,这不是Hadoop的问题而是执行任务的问题。然而,在更大的Hadoop集群里“分析”任务是最主要的痛点。仅仅黑盒方式的监控是不够的,传统的分析器不能应对Hadoop集群的分布式特点。针对这个问题,我们的解决方案得到了很多资深Hadoop开发者的认可。我们还收到了很多关于如何让我们的Hadoop任务“分析”更加有效的有趣反馈。

TaskTracker性能及其对置乱时间的影响

众所周知,置乱是Haddop Job中对性能影响最主要的因素。在很多Hadoop性能调优的文章里都描述了优化图中间的数据(比如使用组合其)、(使用拆分器)置乱分布和纯粹的读/合并性能(线程个数、管理低端内存)。但是很少有文章谈及降低特定TaskTracker速度,这种方案在很多资深“Hadooper”中间已经得到了广泛地讨论。

当计算节点处于高压状态、硬件能力不足或者进入层叠效果时,本地的TaskTracker就会受到负面影响。更简单地说,在大集群中的一些节点会因此降低性能!

结果就是TaskTracker节点不能为还原器提供快速置乱数据,或者可能在进行操作时发生错误。基本上所有还原器都会出现该问题,因为置乱是整个任务执行时间的瓶颈而且会不断增加。在小集群上我们可以监控一组运行的TaskTracker性能,然而在现实中的集群上这是不可行的。监控基于中枢的平均值会掩盖触发该问题的任务,所以不能确定究竟是哪个TaskTracker造成的问题以及背后的原因。

解决方法是采用基线方式,配置PurePath/PureStack模型。对TaskTracker请求做基线能够解决平均值和监控问题,通过这种方法,如果发生TaskTracker mapOutput性能问题我们可以得到即时通知,而且能够及时确认是哪个TaskTracker出现的问题。接下来,我们能够通过通过JVM主机的健康状况定位究竟是基础设施、Hadoop配置或是新操作系统造成了问题。最后,通过追踪所有任务、作业(task)以及mapOutput请求各自的任务,我们可以知道究竟是哪个任务触发了TaskTracker性能问题以及哪些任务受其影响。

NameNode和DataNode变慢

与TaskTracker类似,NameNode和DataNode也会对任务性能产生影响。NameNode或特定DataNode变慢会对整个集群产生显著的影响。解决的办法可以对请求建立基线,进行检测并自动检测性能退化。同样地我们也可以知道哪些任务和客户端受到NameNode和DataNode减速的影响,并判断是基础设施、高使用率还是服务发生的错误。

Cassandra 焦点问题

Spotify在Cassandra高峰论坛上的演讲是最棒的。如果你正在使用或者计划使用Cassandra强烈向你推荐!

读操作用时随着时间性能退化

在第一次部署Cassandra时运行速度非常快,但是读操作用时随着时间不断增加。实际上所有的操作随着时间推移都会有类似的问题,对跨SStable的读取和删除行操作都会导致死节点。所有问题都可以归咎于访问模式和模式设计错误,而且通常都与数据相关。如果你向同一行(row)长时间(几个月)不断写数据,那么这一行会扩散到很多SStable。读取该行数据将变得缓慢,然而访问更“新”的行(位于同一个SSTable)还是很快的 。对同一行不断进行删除和插入情况会更糟糕,不仅这一行的数据会到处扩散而且会充满很多死节点,读取时效率会非常恐怖。然而,平均值数据只是缓慢地增加(这就是均值效应)。实际上“老”行的性能会急剧下降,而“新”行的速度仍然很快。

为了避免这种情况的发生,在应用程序中绝不要经常删除数据,也绝对不要长时间向同一行写入数据。要发现这个问题你应当首先为Cassandra一组列(column)的读请求制作基线。与均值相比基线方法能够在分布式环境下检测变化,并通知你哪些请求会性能退化哪些仍然保持快速。除此之外,为实际终端用户的Cassandra请求进行分类能够助你快速定位问题。

慢节点会影响整个集群

与很多真实世界的应用程序一样,Cassandra节点会因为各种因素变慢(硬件、压缩、GC、网络、磁盘等)。?Cassandra是一个集群化数据库,每一行都在集群里存在很多次,每次写请求都会发送给包含该行的所有节点(甚至是级别相同的节点)。单个节点失效不是大问题,因为其他节点包含了相同的数据所有读写请求都能够继续正常进行。理论上一个超级慢的节点不会带来问题,除非我们明确指定向同一级别的“所有”节点请求数据。然而在内部,每个节点都有一个协调队列等待所有请求完成,即使他应当在请求完成时就马上向客户端作出回应。该队列能够应对一个超级慢的节点,并且迅速地指出单个节点不能响应请求。然而这会让这个集群不能响应任何请求。

这个问题的解决包含两方面。如果可以,使用一个类似Astyanax的令牌客户端。通过直接与包含数据的节点沟通,该客户端能够高效地跳过协调队列问题。除此之外,你应当对服务器节点的Cassandra请求建立基线,当节点变慢时给出警告。说起来奇怪,关闭问题节点也可以暂时解决问题,因为Cassandra能够几乎立刻处理该问题。

读往返次数太多/读数据量过大

Cassandra的另一个典型性能问题来自我们习惯了SQL,这个问题对于Cassandra入门者尤其典型。这是一个数据库设计问题,事务中包含了太多请求或读取大量数据。这不是Cassandra本身的问题,事实是进行太多请求或者读取大量数据会减慢实际事务的处理速度。这个问题可以很容易检测并且通过APM方法发现,而解决办法往往需要对代码和数据模型进行改动。

总结

Hadoop和Cassandra都是扩展性非常好的系统!但是通常这种可扩展性不能解决性能问题,二者都不能避免而且简单的误用也不能解决。

这些系统上出现的特定问题都不会在其他系统上出现。其他虽然不是新问题但是从未有在这样大规模的分布式系统上出现。由于可扩展性和规模的问题,这些问题都难于诊断(尤其是Hadoop)而且会产生巨大的影响(比如Cassandra集群停止)。性能分析专家可以举杯庆祝了,未来的很长一段时间他们都会有做不完的工作。

推荐阅读
  • 58同城的Elasticsearch应用与平台构建实践
    本文由58同城高级架构师于伯伟分享,由陈树昌编辑整理,内容源自DataFunTalk。文章探讨了Elasticsearch作为分布式搜索和分析引擎的应用,特别是在58同城的实施案例,包括集群优化、典型应用实例及自动化平台建设等方面。 ... [详细]
  • 深入解析Spark核心架构与部署策略
    本文详细探讨了Spark的核心架构,包括其运行机制、任务调度和内存管理等方面,以及四种主要的部署模式:Standalone、Apache Mesos、Hadoop YARN和Kubernetes。通过本文,读者可以深入了解Spark的工作原理及其在不同环境下的部署方式。 ... [详细]
  • 优化使用Apache + Memcached-Session-Manager + Tomcat集群方案
    本文探讨了使用Apache、Memcached-Session-Manager和Tomcat集群构建高性能Web应用过程中遇到的问题及解决方案。通过重新设计物理架构,解决了单虚拟机环境无法真实模拟分布式环境的问题,并详细记录了性能测试结果。 ... [详细]
  • 自SQL Server 2005以来,微软的这款数据库产品逐渐崭露头角,成为企业级应用中的佼佼者。本文将探讨SQL Server 2008的革新之处及其对企业级数据库市场的影响。 ... [详细]
  • 深入解析:主流开源分布式文件系统综述
    本文详细探讨了几款主流的开源分布式文件系统,包括HDFS、MooseFS、Lustre、GlusterFS和CephFS,重点分析了它们的元数据管理和数据一致性机制,旨在为读者提供深入的技术见解。 ... [详细]
  • 构建Filebeat-Kafka-Logstash-ElasticSearch-Kibana日志收集体系
    本文介绍了如何使用Filebeat、Kafka、Logstash、ElasticSearch和Kibana构建一个高效、可扩展的日志收集与分析系统。各组件分别承担不同的职责,确保日志数据能够被有效收集、处理、存储及可视化。 ... [详细]
  • 在CentOS上构建Ntopng实时网络流量监控平台
    本文详细介绍了如何在CentOS操作系统上安装和配置Ntopng,一个强大的网络流量监控工具。Ntopng能够提供实时的网络流量分析,并通过Web界面展示详细的流量报告。 ... [详细]
  • 本文介绍了MySQL数据库的安全权限管理思想及其制度流程,涵盖从项目开发、数据库更新到日常运维等多个方面的详细流程控制,旨在通过严格的流程管理和权限控制,有效预防数据安全隐患。 ... [详细]
  • 本文探讨了在使用MySQL数据库时遇到的一些基本问题,如连接失败和语句执行错误,并提供了多个有效的解决方案。 ... [详细]
  • 本文在前文基础上,进一步探讨了如何利用Multi-Paxos算法解决一系列值的共识问题。文中不仅分析了Basic Paxos的局限性,还详细阐述了通过引入领导者节点优化Multi-Paxos算法的具体方法。 ... [详细]
  • JSP服务器概述及搭建指南
    本文详细介绍了JSP服务器的概念、主流服务器软件及其搭建步骤,旨在帮助开发者更好地理解和使用JSP技术。 ... [详细]
  • 深入解析Apache SkyWalking CVE-2020-9483 SQL注入漏洞
    本文详细探讨了Apache SkyWalking中的SQL注入漏洞(CVE-2020-9483),特别是其影响范围、漏洞原因及修复方法。Apache SkyWalking是一款强大的应用性能管理工具,广泛应用于微服务架构中。然而,该漏洞使得未经授权的攻击者能够通过特定的GraphQL接口执行恶意SQL查询,从而获取敏感信息。 ... [详细]
  • 本文旨在探讨机器学习与数据分析之间的差异,不仅在于它们处理的数据类型,还包括技术背景、业务应用场景以及参与者的不同。通过深入分析,希望能为读者提供清晰的理解。 ... [详细]
  • Zookeeper面试常见问题解析
    本文详细介绍了Zookeeper中的ZAB协议、节点类型、ACL权限控制机制、角色分工、工作状态、Watch机制、常用客户端、分布式锁实现、默认通信框架以及消息广播和领导选举的流程。 ... [详细]
  • 一面问题:MySQLRedisKafka线程算法mysql知道哪些存储引擎,它们的区别mysql索引在什么情况下会失效mysql在项目中的优化场景&# ... [详细]
author-avatar
潘月飞--_758
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有