热门标签 | HotTags
当前位置:  开发笔记 > 数据库 > 正文

将HadoopRPC框架应用于多节点任务调度

在hadoop中,主从节点之间保持着心跳通信,用于传输节点状态信息、任务调度信息以及节点动作信息等等。hdfs的namenode与datanode,mapreduce的jobtracker与tasktracker,hbase的hmaster与regionserver之间的通信,都是基于hadoopRPC。HadoopRPC是hadoop

在hadoop中,主从节点之间保持着心跳通信,用于传输节点状态信息、任务调度信息以及节点动作信息等等。 hdfs的namenode与datanode,mapreduce的jobtracker与tasktracker,hbase的hmaster与 regionserver之间的通信,都是基于hadoop RPC。Hadoop RPC是hadoop

在hadoop中,主从节点之间保持着心跳通信,用于传输节点状态信息、任务调度信息以及节点动作信息等等。 hdfs的namenode与datanode,mapreduce的jobtracker与tasktracker,hbase的hmaster与 regionserver之间的通信,都是基于hadoop RPC。Hadoop RPC是hadoop里非常基础的通信框架。hadoop 2.0以前hadoop RPC的数据序列化是通过实现自己定义的Writable接口实现,而从hadoop 2.0开始,数据的序列化工作交给了ProtocolBuffer去做。关于Hadoop RPC的实现原理已经有很多文章进行了详细的介绍(源码级强力分析hadoop的RPC机制,Hadoop基于Protocol Buffer的RPC实现代码分析-Server端,带有HA功能的Hadoop Client端RPC实现原理与代码分析),这里就不在赘述了。下面就直接引入问题和方案吧。

问题

工作中经常需要在定时任务系统上写一些定时任务,随着业务规模的增长和扩大,需要定时处理的任务越来越多,任务之间的执行间隔越来越小,某一时间段内(比如0点、整点或半点)执行的任务会越来越密集,只在一台机器上执行这些任务的话,会出现较大的风险:

  • 任务并发度较高时,单机的系统资源将成为瓶颈
  • 如果一个任务的运行占用了整个机器的大部分资源,比如sql查询耗费巨大内存和CPU资源,将直接影响其他任务的运行
  • 任务失败后,如果仍然在同一台节点自动重新执行,失败率较高
  • 机器宕机后,必须第一时间重启机器或重新部署定时任务系统,所有任务都不能按时执行
  • 等等

方案

可想而知的是,可以通过将定时任务系统进行分布式改造,使用多个节点执行任务,将任务分发到不同节点上进行处理,并且完善失败重试机制,从而提高系统稳定性,实现任务系统的高可靠。

既然是在多个节点之间分发任务,肯定得有个任务的管理者(主节点),在我们现有的系统中,也就是一套可以部署定时任务的web系统,任务代码更新后,部署好这套web系统,即可通过web页面设置定时任务并且进行调度(在单个节点上执行)。执行任务的节点(子节点)有多个以后,如何分发任务到子节点呢,我们可以把任务的信息封装成一个bean,通过RPC发布给子节点,子节点通过这个任务bean获得任务信息,并在指定的时刻执行任务。同时,子节点可以通过与主节点的心跳通信将节点状态和执行任务的情况告诉主节点。这样其实就与hadoop mapreduce分发任务有点相似了,呵呵,这里主节点与子节点之间的通信,我们就可以通过Hadoop RPC框架来实现了,不同的是,我们分发的任务是定时任务,发布任务时需要将任务的定时信息一并发给子节点。

实现

单点的定时任务系统是基于Quartz的,在分布式环境下,可以继续基于Quartz进行改造,任务的定时信息可以通过Quartz中的JobDetail和Trigger对象来描述并封装,加上任务执行的入口类信息,再通过RPC由主节点发给子节点。子节点收到封装好的任务信息对象后,再构造JobDetail和Trigger,设置好启动时间后,通过入口类启动任务。下面是一个简单的demo。

以下是一个简单的定时任务信息描述对象CronJobInfo,包括JobDetailInfo和TriggerInfo两个属性:

/**
* 定时任务信息,包括任务信息和触发器信息
*/
public class CronJobInfo implements Writable
{
    private JobDetailInfo jobDetailInfo = new JobDetailInfo();
    private TriggerInfo triggerInfo = new TriggerInfo();
    @Override
    public void readFields(DataInput in) throws IOException
    {
        jobDetailInfo.readFields(in);
        triggerInfo.readFields(in);
    }
    @Override
    public void write(DataOutput out) throws IOException
    {
        jobDetailInfo.write(out);
        triggerInfo.write(out);
    }
    // getters and setters...
}

任务信息JobDetailInfo,由主节点构造,子节点解析构造JobDetail对象:

public class JobDetailInfo implements Writable
{
    private String name; // 任务名称
    private String group = Scheduler.DEFAULT_GROUP; // 任务组
    private String description; // 任务描述
    private Class jobClass; // 任务的启动类
    private JobDataMap jobDataMap; // 任务所需的参数,用来给作业提供数据支持的数据结构
    private boolean volatility = false; // 重启应用之后是否删除任务的相关信息,
    private boolean durability = false; // 任务完成之后是否依然保留到数据库
    private boolean shouldRecover = false; // 应用重启之后时候忽略过期任务
    @Override
    public void readFields(DataInput in) throws IOException
    {
        name = WritableUtils.readString(in);
        group = WritableUtils.readString(in);
        description = WritableUtils.readString(in);
        String className = WritableUtils.readString(in);
        if (className != null)
        {
          try
          {
             jobClass = Class.forName(new String(className));
          }
          catch (ClassNotFoundException e)
          {
             e.printStackTrace();
          }
        }
        int dataMapSize = WritableUtils.readVInt(in);
        while (dataMapSize-- > 0)
        {
           String key = WritableUtils.readString(in);
           String value = WritableUtils.readString(in);
           jobDataMap.put(key, value);
        }
        volatility = in.readBoolean();
        durability = in.readBoolean();
        shouldRecover = in.readBoolean();
    }
    @Override
    public void write(DataOutput out) throws IOException
    {
        WritableUtils.writeString(out, name);
        WritableUtils.writeString(out, group);
        WritableUtils.writeString(out, description);
        WritableUtils.writeString(out, jobClass.getName());
        if (jobDataMap == null)
            WritableUtils.writeVInt(out, 0);
        else
        {
            WritableUtils.writeVInt(out, jobDataMap.size());
            for (Object k : jobDataMap.keySet())
            {
                WritableUtils.writeString(out, k.toString());
                WritableUtils.writeString(out, jobDataMap.get(k).toString());
            }
        }
        out.writeBoolean(volatility);
        out.writeBoolean(durability);
        out.writeBoolean(shouldRecover);
   }
   //getters and setters
   //.....
}

任务触发器信息TriggerInfo ,由主节点构造,子节点解析构造Trigger对象:

public class TriggerInfo implements Writable
{
    private String name; // trigger名称
    private String group = Scheduler.DEFAULT_GROUP; // triger组名称
    private String description; // trigger描述
    private Date startTime; // 启动时间
    private Date endTime; // 结束时间
    private long repeatInterval; // 重试时间间隔
    private int repeatCount; //重试次数
    @Override
    public void readFields(DataInput in) throws IOException
    {
       name = WritableUtils.readString(in);
       group = WritableUtils.readString(in);
       description = WritableUtils.readString(in);
       long start = in.readLong();
       startTime = start==0 ? null : new Date(start);
       long end = in.readLong();
       endTime = end==0 ? null : new Date(end);
       repeatInterval = in.readLong();
       repeatCount = in.readInt();
    }
    @Override
    public void write(DataOutput out) throws IOException
    {
       WritableUtils.writeString(out, name);
       WritableUtils.writeString(out, group);
       WritableUtils.writeString(out, description);
       out.writeLong(startTime == null ? 0 : startTime.getTime());
       out.writeLong(endTime == null ? 0 : endTime.getTime());
       out.writeLong(repeatInterval);
       out.writeInt(repeatCount);
    }
    //getters and setters
    //.....
}

主从节点通信的协议:

public interface TaskProtocol extends VersionedProtocol
{
	public CronJobInfo hearbeat();
}

在这个demo中,主节点启动后,启动RPC server线程,等待客户端(子节点)的连接,当客户端调用heartbeat方法时,主节点将会生成一个任务信息返回给客户端:

public class TaskScheduler implements TaskProtocol
{
	private Logger logger = Logger.getLogger(getClass());
	private Server server;
	public TaskScheduler()
	{
		try
		{
			server = RPC.getServer(this, "192.168.1.101", 8888, new Configuration());
			server.start();
			server.join();
		}
		catch (UnknownHostException e)
		{
			e.printStackTrace();
		}
		catch (IOException e)
		{
			e.printStackTrace();
		}
		catch (InterruptedException e)
		{
			e.printStackTrace();
		}
	}
	@Override
	public long getProtocolVersion(String arg0, long arg1) throws IOException
	{
		return 1;
	}
	@Override
	public CronJobInfo generateCronJob()
	{
		// 1、创建JobDetial对象
		JobDetailInfo detail = new JobDetailInfo();
		// 设置工作项
		detail.setJobClass(DemoTask.class);
		detail.setName("MyJob_1");
		detail.setGroup("JobGroup_1");
		// 2、创建Trigger对象
		TriggerInfo trigger = new TriggerInfo();
		trigger.setName("Trigger_1");
		trigger.setGroup("Trigger_Group_1");
		trigger.setStartTime(new Date());
		// 设置重复停止时间,并销毁该Trigger对象
		Calendar c = Calendar.getInstance();
		c.setTimeInMillis(System.currentTimeMillis() + 1000 * 1L);
		trigger.setEndTime(c.getTime());
		// 设置重复间隔时间
		trigger.setRepeatInterval(1000 * 1L);
		// 设置重复执行次数
		trigger.setRepeatCount(3);
		CronJobInfo info = new CronJobInfo();
		info.setJobDetailInfo(detail);
		info.setTriggerInfo(trigger);
		return info;
	}
	public static void main(String[] args)
	{
		TaskScheduler ts = new TaskScheduler();
	}
}

demo任务类,打印信息:

public class DemoTask implements Job
{
	public void execute(JobExecutionContext context)
			throws JobExecutionException
	{
		System.out.println(this + ": executing task @" + new Date());
	}
}

子节点demo,启动后连接主节点,远程调用generateCronJob方法,获得一个任务描述信息,并启动定时任务

public class TaskRunner
{
	private Logger logger = Logger.getLogger(getClass());
	private TaskProtocol proxy;
	public TaskRunner()
	{
		InetSocketAddress addr = new InetSocketAddress("localhost", 8888);
		try
		{
			proxy = (TaskProtocol) RPC.waitForProxy(TaskProtocol.class, 1, addr,
					new Configuration());
		}
		catch (IOException e)
		{
			e.printStackTrace();
		}
	}
	public void close()
	{
		RPC.stopProxy(proxy);
	}
	/**
	 * 从server获取一个定时任务
	 */
	public void getCronJob()
	{
		CronJobInfo info = proxy.generateCronJob();
		JobDetail jobDetail = getJobDetail(info.getJobDetailInfo());
		SimpleTrigger trigger = getTrigger(info.getTriggerInfo());
		// 创建Scheduler对象,并配置JobDetail和Trigger对象
		SchedulerFactory sf = new StdSchedulerFactory();
		Scheduler scheduler = null;
		try
		{
			scheduler = sf.getScheduler();
			scheduler.scheduleJob(jobDetail, trigger);
			// 执行启动操作
			scheduler.start();
		}
		catch (SchedulerException e)
		{
			e.printStackTrace();
		}
	}
	/**
	 * @param jobDetailInfo
	 * @return
	 */
	private JobDetail getJobDetail(JobDetailInfo info)
	{
		JobDetail detail = new JobDetail();
		detail.setName(info.getName());
		detail.setGroup(info.getGroup());
		detail.setDescription(info.getDescription());
		detail.setJobClass(info.getJobClass());
		detail.setJobDataMap(info.getJobDataMap());
		detail.setRequestsRecovery(info.isShouldRecover());
		detail.setDurability(info.isDurability());
		detail.setVolatility(info.isVolatility());
		logger.info("client get jobdetail:" + detail);
		return detail;
	}
	/**
	 * @param triggerInfo
	 * @return
	 */
	private SimpleTrigger getTrigger(TriggerInfo info)
	{
		SimpleTrigger trigger = new SimpleTrigger();
		trigger.setName(info.getName());
		trigger.setGroup(info.getGroup());
		trigger.setDescription(info.getDescription());
		trigger.setStartTime(info.getStartTime());
		trigger.setEndTime(info.getEndTime());
		trigger.setRepeatInterval(info.getRepeatInterval());
		trigger.setRepeatCount(info.getRepeatCount());
		logger.info("client get trigger:" + trigger);
		return trigger;
	}
	public static void main(String[] args)
	{
		TaskRunner t = new TaskRunner();
		t.getCronJob();
		t.close();
	}
}

先启动TaskScheduler,再启动TaskRunner,结果如下:

  • TaskScheduler:

2013-01-20 15:42:21,661 [Socket Reader #1 for port 8888] INFO? [org.apache.hadoop.ipc.Server] – Starting Socket Reader #1 for port 8888
2013-01-20 15:42:21,662 [main] INFO? [org.apache.hadoop.ipc.metrics.RpcMetrics] – Initializing RPC Metrics with hostName=TaskScheduler, port=8888
2013-01-20 15:42:21,706 [main] INFO? [org.apache.hadoop.ipc.metrics.RpcDetailedMetrics] – Initializing RPC Metrics with hostName=TaskScheduler, port=8888
2013-01-20 15:42:21,710 [IPC Server listener on 8888] INFO? [org.apache.hadoop.ipc.Server] – IPC Server listener on 8888: starting
2013-01-20 15:42:21,711 [IPC Server Responder] INFO? [org.apache.hadoop.ipc.Server] – IPC Server Responder: starting
2013-01-20 15:42:21,711 [IPC Server handler 0 on 8888] INFO? [org.apache.hadoop.ipc.Server] – IPC Server handler 0 on 8888: starting
2013-01-20 15:42:24,084 [IPC Server handler 0 on 8888] INFO? [org.mh.rpc.task.TaskScheduler] – generate a task: org.mh.rpc.task.JobDetailInfo@1f26605

  • TaskRunner:

2013-01-20 15:42:26,323 [main] INFO? [org.mh.rpc.task.TaskRunner] – client get jobdetail:JobDetail ‘JobGroup_1.MyJob_1′:? jobClass: ‘org.mh.rpc.quartz.GetSumTask isStateful: false isVolatile: false isDurable: false requestsRecovers: false
2013-01-20 15:42:26,329 [main] INFO? [org.mh.rpc.task.TaskRunner] – client get trigger:Trigger ‘Trigger_Group_1.Trigger_1′:? triggerClass: ‘org.quartz.SimpleTrigger isVolatile: false calendar: ‘null’ misfireInstruction: 0 nextFireTime: null
2013-01-20 15:42:26,382 [main] INFO? [org.quartz.simpl.SimpleThreadPool] – Job execution threads will use class loader of thread: main
2013-01-20 15:42:26,411 [main] INFO? [org.quartz.core.SchedulerSignalerImpl] – Initialized Scheduler Signaller of type: class org.quartz.core.SchedulerSignalerImpl
2013-01-20 15:42:26,411 [main] INFO? [org.quartz.core.QuartzScheduler] – Quartz Scheduler v.1.6.5 created.
2013-01-20 15:42:26,413 [main] INFO? [org.quartz.simpl.RAMJobStore] – RAMJobStore initialized.
2013-01-20 15:42:26,413 [main] INFO? [org.quartz.impl.StdSchedulerFactory] – Quartz scheduler ‘DefaultQuartzScheduler’ initialized from default resource file in Quartz package: ‘quartz.properties’
2013-01-20 15:42:26,413 [main] INFO? [org.quartz.impl.StdSchedulerFactory] – Quartz scheduler version: 1.6.5
2013-01-20 15:42:26,415 [main] INFO? [org.quartz.core.QuartzScheduler] – Scheduler DefaultQuartzScheduler_$_NON_CLUSTERED started.
org.mh.rpc.quartz.DemoTask@1b66b06: executing task @Sun Jan 20 15:42:26 CST 2013

上面是一个简单的demo,演示了如何通过RPC将任务调度给节点去执行,对于Quartz来说,任务的形式可以千变万化,关键就看怎么去使用了,分发到多个节点上执行的话,就还需要对任务的信息做更多的封装了。

(本文已被阅读2次)

在hadoop中,主从节点之间保持着心跳通信,用于传输节点状态信息、任务调度信息以及节点动作信息等等。 hdfs的namenode与datanode,mapreduce的jobtracker与tasktracker,hbase的hmaster与 regionserver之间的通信,都是基于hadoop RPC。Hadoop RPC是hadoop里非常基础的通信框架。hadoop 2.0以前hadoop RPC的数据序列化是通过实现自己定义的Writable接口实现,而从hadoop 2.0开始,数据的序列化工作交给了ProtocolBuffer去做。关于Hadoop RPC的实现原理已经有很多文章进行了详细的介绍(源码级强力分析hadoop的RPC机制,Hadoop基于Protocol Buffer的RPC实现代码分析-Server端,带有HA功能的Hadoop Client端RPC实现原理与代码分析),这里就不在赘述了。下面就直接引入问题和方案吧。 问题 工作中经常需要在定时任务系统上写一些定时任务,随着业务规模的增长和扩大,需要定时处理的任务越来越多,任务之间的执行间隔越来越小,某一时间段内(比如0点、整点或半点)执行的任务会越来越密集,只在一台机器上执行这些任务的话,会出现较大的风险: 任务并发度较高时,单机的系统资源将成为瓶颈 如果一个任务的运行占用了整个机器的大部分资源,比如sql查询耗费巨大内存和CPU资源,将直接影响其他任务的运行 任务失败后,如果仍然在同一台节点自动重新执行,失败率较高 机器宕机后,必须第一时间重启机器或重新部署定时任务系统,所有任务都不能按时执行 等等 方案 可想而知的是,可以通过将定时任务系统进行分布式改造,使用多个节点执行任务,将任务分发到不同节点上进行处理,并且完善失败重试机制,从而提高系统稳定性,实现任务系统的高可靠。 既然是在多个节点之间分发任务,肯定得有个任务的管理者(主节点),在我们现有的系统中,也就是一套可以部署定时任务的web系统,任务代码更新后,部署好这套web系统,即可通过web页面设置定时任务并且进行调度(在单个节点上执行)。执行任务的节点(子节点)有多个以后,如何分发任务到子节点呢,我们可以把任务的信息封装成一个bean,通过RPC发布给子节点,子节点通过这个任务bean获得任务信息,并在指定的时刻执行任务。同时,子节点可以通过与主节点的心跳通信将节点状态和执行任务的情况告诉主节点。这样其实就与hadoop mapreduce分发任务有点相似了,呵呵,这里主节点与子节点之间的通信,我们就可以通过Hadoop RPC框架来实现了,不同的是,我们分发的任务是定时任务,发布任务时需要将任务的定时信息一并发给子节点。 实现 单点的定时任务系统是基于Quartz的,在分布式环境下,可以继续基于Quartz进行改造,任务的定时信息可以通过Quartz中的JobDetail和Trigger对象来描述并封装,加上任务执行的入口类信息,再通过RPC由主节点发给子节点。子节点收到封装好的任务信息对象后,再构造JobDetail和Trigger,设置好启动时间后,通过入口类启动任务。下面是一个简单的demo。 以下是一个简单的定时任务信息描述对象CronJobInfo,包括JobDetailInfo和TriggerInfo两个属性: 任务信息JobDetailInfo,由主节点构造,子节点解析构造JobDetail对象: 任务触发器信息TriggerInfo ,由主节点构造,子节点解析构造Trigger对象: 主从节点通信的协议: 在这个demo中,主节点启动后,启动RPC server线程,等待客户端(子节点)的连接,当客户端调用heartbeat方法时,主节点将会生成一个任务信息返回给客户端: demo任务类,打印信息: 子节点demo,启动后连接主节点,远程调用generateCronJob方法,获得一个任务描述信息,并启动定时任务 先启动TaskScheduler,再启动TaskRunner,结果如下: TaskScheduler: 2013-01-20 15:42:21,661 [Socket Reader #1 for port 8888] INFO? [org.apache.hadoop.ipc.Server] – Starting Socket Reader #1 for port 8888 2013-01-20 [...]
推荐阅读
  • 一、Hadoop来历Hadoop的思想来源于Google在做搜索引擎的时候出现一个很大的问题就是这么多网页我如何才能以最快的速度来搜索到,由于这个问题Google发明 ... [详细]
  • Apache Hadoop HDFS QJournalProtocol 中 getJournalCTime 方法的应用与代码实例分析 ... [详细]
  • 构建高可用性Spark分布式集群:大数据环境下的最佳实践
    在构建高可用性的Spark分布式集群过程中,确保所有节点之间的无密码登录是至关重要的一步。通过在每个节点上生成SSH密钥对(使用 `ssh-keygen -t rsa` 命令并保持默认设置),可以实现这一目标。此外,还需将生成的公钥分发到所有节点的 `~/.ssh/authorized_keys` 文件中,以确保节点间的无缝通信。为了进一步提升集群的稳定性和性能,建议采用负载均衡和故障恢复机制,并定期进行系统监控和维护。 ... [详细]
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • Hadoop的分布式架构改进与应用
    nsitionalENhttp:www.w3.orgTRxhtml1DTDxhtml1-transitional.dtd ... [详细]
  • Zookeeper作为Apache Hadoop生态系统中的一个重要组件,主要致力于解决分布式应用中的常见数据管理难题。它提供了统一的命名服务、状态同步服务以及集群管理功能,有效提升了分布式系统的可靠性和可维护性。此外,Zookeeper还支持配置管理和临时节点管理,进一步增强了其在复杂分布式环境中的应用价值。 ... [详细]
  • 在搭建Hadoop集群以处理大规模数据存储和频繁读取需求的过程中,经常会遇到各种配置难题。本文总结了作者在实际部署中遇到的典型问题,并提供了详细的解决方案,帮助读者避免常见的配置陷阱。通过这些经验分享,希望读者能够更加顺利地完成Hadoop集群的搭建和配置。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • 在Hive中合理配置Map和Reduce任务的数量对于优化不同场景下的性能至关重要。本文探讨了如何控制Hive任务中的Map数量,分析了当输入数据超过128MB时是否会自动拆分,以及Map数量是否越多越好的问题。通过实际案例和实验数据,本文提供了具体的配置建议,帮助用户在不同场景下实现最佳性能。 ... [详细]
  • 技术日志:深入探讨Spark Streaming与Spark SQL的融合应用
    技术日志:深入探讨Spark Streaming与Spark SQL的融合应用 ... [详细]
  • NoSQL数据库,即非关系型数据库,有时也被称作Not Only SQL,是一种区别于传统关系型数据库的管理系统。这类数据库设计用于处理大规模、高并发的数据存储与查询需求,特别适用于需要快速读写大量非结构化或半结构化数据的应用场景。NoSQL数据库通过牺牲部分一致性来换取更高的可扩展性和性能,支持分布式部署,能够有效应对互联网时代的海量数据挑战。 ... [详细]
  • hive和mysql的区别是什么[mysql教程]
    hive和mysql的区别有:1、查询语言不同,hive是hql语言,MySQL是sql语句;2、数据存储位置不同,hive把数据存储在hdfs上,MySQL把数据存储在自己的系统 ... [详细]
  • Hadoop——实验七:MapReduce编程实践
    文章目录一.实验目的二.实验内容三.实验步骤及结果分析 1.基于ubuntukylin14.04(7)版本,安装hadoop-eclipse-kepler-plugi ... [详细]
  • 工作原理_一文理解 Spark 基础概念及工作原理
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了一文理解Spark基础概念及工作原理相关的知识,希望对你有一定的参考价值。 ... [详细]
  • 阿里云大数据计算服务MaxCompute (原名 ODPS)
     MaxCompute是阿里EB级计算平台,经过十年磨砺,它成为阿里巴巴集团数据中台的计算核心和阿里云大数据的基础服务。去年MaxCompute做了哪些工作,这些工作背后的原因是什 ... [详细]
author-avatar
王家刚163034
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有